619-50-1Relevant articles and documents
Selective Complexation of Hydrazone Based Ketimine with 3d, 4d, and 5d Metals: Synthesis, Characterization, and Biological Activity
Ahmad,Taj,Tirmizi,Alelwani,Hajjar,Makki,Shah,Ali,Hassan,Tahir,Siddiq
, p. 142 - 147 (2019)
The hydrazone derived ketimine of dehydroacetic acid and its metal {Cu(II), Ni(II), Zn(II), Fe(III), Cd(II), Pd(II), La(III), Nd(III), Ce(III)} complexes are synthesized and characterized by IR, 1H and 13C NMR, and UV-Vis spectroscopy. DNA studies have been carried out for metal complexes by electronic absorption spectroscopy. It is determined that metal complexes bind to DNA through intercalation. The complexes of Cu(II), Zn(II) and Pd(II) demonstrate significant activity against HeLa cells (cervical cancer).
Kevill,Foss
, p. 2837 (1967)
Shain,Kirsch
, p. 5848 (1968)
Methylation with Dimethyl Carbonate/Dimethyl Sulfide Mixtures: An Integrated Process without Addition of Acid/Base and Formation of Residual Salts
Chan, Bun,Lui, Matthew Y.,Lui, Yuen Wai
, (2022/01/08)
Dimethyl sulfide, a major byproduct of the Kraft pulping process, was used as an inexpensive and sustainable catalyst/co-reagent (methyl donor) for various methylations with dimethyl carbonate (as both reagent and solvent), which afforded excellent yields of O-methylated phenols and benzoic acids, and mono-C-methylated arylacetonitriles. Furthermore, these products could be isolated using a remarkably straightforward workup and purification procedure, realized by dimethyl sulfide‘s neutral and distillable nature and the absence of residual salts. The likely mechanisms of these methylations were elucidated using experimental and theoretical methods, which revealed that the key step involves the generation of a highly reactive trimethylsulfonium methylcarbonate intermediate. The phenol methylation process represents a rare example of a Williamson-type reaction that occurs without the addition of a Br?nsted base.
Cobalt single atoms anchored on nitrogen-doped porous carbon as an efficient catalyst for oxidation of silanes
Yang, Fan,Liu, Zhihui,Liu, Xiaodong,Feng, Andong,Zhang, Bing,Yang, Wang,Li, Yongfeng
supporting information, p. 1026 - 1035 (2021/02/09)
The oxidation reactions of organic compounds are important transformations for the fine and bulk chemical industry. However, they usually involve the use of noble metal catalysts and suffer from toxic or environmental issues. Here, an efficient, environmentally friendly, and atomically dispersed Co catalyst (Co-N-C) was preparedviaa simple, porous MgO template and etching method using 1,10-phenanthroline as C and N sources, and CoCl2·6H2O as the metal source. The obtained Co-N-C catalyst exhibits excellent catalytic performance for the oxidation of silanes with 97% isolated yield of organosilanol under mild conditions (room temperature, H2O as an oxidant, 1.8 h), and good stability with 95% isolated yield after nine consecutive reactions. The turnover frequency (TOF) is as high as 381 h?1, exceeding those of most non-noble metal catalysts and some noble metal catalysts. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), extended X-ray absorption fine structure (EXAFS), and wavelet transform (WT) spectroscopy corroborate the existence of atomically dispersed Co. The coordination numbers of Co affected by the pyrolysis temperature in Co-N-C-700, Co-N-C-800, and Co-N-C-900 are 4.1, 3.6, and 2.2, respectively. Owing to a higher Co-N3content, Co-N-C-800 shows more outstanding catalytic performance than Co-N-C-700 and Co-N-C-800. Moreover, density functional theory (DFT) calculations reveal that the Co-N3structure exhibits more activity compared with Co-N4and Co-N2, which is because the Co atom in Co-N3was bound with both H atom and Si atom, and it induced the longest Si-H bond.
Ni-NiO heterojunctions: a versatile nanocatalyst for regioselective halogenation and oxidative esterification of aromatics
Bhardwaj, Nivedita,Goel, Bharat,Indra, Arindam,Jain, Shreyans K.,Singh, Ajit Kumar,Tripathi, Nancy
, p. 14177 - 14183 (2021/08/16)
Herein, we report a facile method for the synthesis of Ni-NiO heterojunction nanoparticles, which we utilized for the nuclear halogenation reaction of phenol and substituted phenols usingN-bromosuccinimide (NBS). A remarkablepara-selectivity was achieved for the halogenated products under semi-aqueous conditions. Interestingly, blocking of thepara-position of phenol offeredortho-selective halogenation. In addition, the Ni-NiO nanoparticles catalyzed the oxidative esterification of carbonyl compounds with alcohol, diol or dithiol in the presence of a catalytic amount of NBS. It was observed that the aromatic carbonyls substituted with an electron-donating group favoured nuclear halogenation, whereas an electron-withdrawing group substitution in carbonyl compounds facilitated the oxidation reaction. In addition, the catalyst was magnetically separated and recycled 10 times. The tuned electronic structure at the Ni-NiO heterojunction controlled selectivity and activity as no suchpara-selectivity was observed with commercially available NiO or Ni nanoparticles.