72593-77-2Relevant articles and documents
The discovery and enhanced properties of trichain lipids in lipopolyplex gene delivery systems
Mohammadi, Atefeh,Kudsiova, Laila,Mustapa, M. Firouz Mohd,Campbell, Frederick,Vlaho, Danielle,Welser, Katharina,Story, Harriet,Tagalakis, Aristides D.,Hart, Stephen L.,Barlow, David J.,Tabor, Alethea B.,Lawrence, M. Jayne,Hailes, Helen C.
, p. 945 - 957 (2019)
The formation of a novel trichain (TC) lipid was discovered when a cationic lipid possessing a terminal hydroxyl group and the helper lipid dioleoyl l-α-phosphatidylethanolamine (DOPE) were formulated as vesicles and stored. Importantly, the transfection efficacies of lipopolyplexes comprised of the TC lipid, a targeting peptide and DNA (LPDs) were found to be higher than when the corresponding dichain (DC) lipid was used. To explore this interesting discovery and determine if this concept can be more generally applied to improve gene delivery efficiencies, the design and synthesis of a series of novel TC cationic lipids and the corresponding DC lipids was undertaken. Transfection efficacies of the LPDs were found to be higher when using the TC lipids compared to the DC analogues, so experiments were carried out to investigate the reasons for this enhancement. Sizing experiments and transmission electron microscopy indicated that there were no major differences in the size and shape of the LPDs prepared using the TC and DC lipids, while circular dichroism spectroscopy showed that the presence of the third acyl chain did not influence the conformation of the DNA within the LPD. In contrast, small angle neutron scattering studies showed a considerable re-arrangement of lipid conformation upon formulation as LPDs, particularly of the TC lipids, while gel electrophoresis studies revealed that the use of a TC lipid in the LPD formulation resulted in enhanced DNA protection properties. Thus, the major enhancement in transfection performance of these novel TC lipids can be attributed to their ability to protect and subsequently release DNA. Importantly, the TC lipids described here highlight a valuable structural template for the generation of gene delivery vectors, based on the use of lipids with three hydrophobic chains.
Fong et al.
, p. 857,858,859 (1977)
Synthesis of Phosphonic Acid Ligands for Nanocrystal Surface Functionalization and Solution Processed Memristors
De Roo, Jonathan,Zhou, Zimu,Wang, Jiaying,Deblock, Loren,Crosby, Alfred J.,Owen, Jonathan S.,Nonnenmann, Stephen S.
, p. 8034 - 8039 (2018/10/25)
Here, we synthesized 2-ethylhexyl, 2-hexyldecyl, 2-[2-(2-methoxyethoxy)ethoxy]ethyl, oleyl, and n-octadecyl phosphonic acid and used them to functionalize CdSe and HfO2 nanocrystals. In contrast to branched carboxylic acids, postsynthetic surface functionalization of CdSe and HfO2 nanocrystals was readily achieved with branched phosphonic acids. Phosphonic acid capped HfO2 nanocrystals were subsequently evaluated as memristors using conductive atomic force microscopy. We found that 2-ethylhexyl phosphonic acid is a superior ligand, combining a high colloidal stability with a compact ligand shell that results in a record-low operating voltage that is promising for application in flexible electronics.
Glycol-functionalized ionic liquids for high-temperature enzymatic ring-opening polymerization
Zhao, Hua,Afriyie, Lennox O.,Larm, Nathaniel E.,Baker, Gary A.
, p. 36025 - 36033 (2018/11/20)
Enzymatic ring-opening polymerization (ROP) is a benign method for preparing polyesters, such as polylactides and other polylactones. These reactions are typically carried out at relatively high temperatures (60-130 °C), however, there is a deficiency of enzyme-compatible solvents for such thermally-demanding biocatalytic processes. In this study, we have prepared a series of short-chained glycol-grafted ionic liquids (ILs) based on a phosphonium, imidazolium, pyridinium, ammonium, or piperidinium cationic headgroup. Most of these glycol-grafted ILs exhibit relatively low dynamic viscosities (33-123 mPa s at 30 °C), coupled with excellent short-term thermal stabilities with decomposition temperatures (Tdcp) in the 318-403 °C range. Significantly, the long-term thermal stability under conditions matching those for enzymatic ROP synthesis (130 °C for 7 days) is excellent for several of these task-specific ILs. Using Novozym 435-catalyzed ROP, these ILs are demonstrated to be viable solvents for the enzymatic production of reasonable yields (30-48%) of high molecular mass (Mw ~20 kDa) poly(l-lactide) and poly(?-caprolactone) compared to solventless conditions (12-14 kDa).