539-74-2Relevant articles and documents
Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes
Cruz, Daniel A.,Sinka, Victoria,De Armas, Pedro,Steingruber, Hugo Sebastian,Fernández, Israel,Martín, Víctor S.,Miranda, Pedro O.,Padrón, Juan I.
supporting information, p. 6105 - 6109 (2021/08/18)
A new method that allows the complete control of the regioselectivity of the hydrobromination reaction of alkenes is described. Herein, we report a radical procedure with TMSBr and oxygen as common reagents, where the formation of the anti-Markovnikov product occurs in the presence of parts per million amounts of the Cu(I) species and the formation of the Markovnikov product occurs in the presence of 30 mol % iron(II) bromide. Density functional theory calculations combined with Fukui's radical susceptibilities support the obtained results.
Synthesis of N-Substituted phosphoramidic acid esters as “reverse” fosmidomycin analogues
Adeyemi, Christiana M.,Hoppe, Heinrich C.,Isaacs, Michelle,Klein, Rosalyn,Lobb, Kevin A.,Kaye, Perry T.
, p. 2371 - 2378 (2019/03/23)
An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
Antimicrobial poly(2-methyloxazoline)s with bioswitchable activity through satellite group modification
Krumm, Christian,Harmuth, Simon,Hijazi, Montasser,Neugebauer, Britta,Kampmann, Anne-Larissa,Geltenpoth, Helma,Sickmann, Albert,Tiller, Joerg C.
supporting information, p. 3830 - 3834 (2014/05/06)
Biocides are widely used for preventing the spread of microbial infections and fouling of materials. Since their use can build up microbial resistance and cause unpredictable long-term environmental problems, new biocidal agents are required. In this study, we demonstrate a concept in which an antimicrobial polymer is deactivated by the cleavage of a single group. Following the satellite group approach, a biocidal quaternary ammonium group was linked through a poly(2-methyloxazoline) to an ester satellite group. The polymer with an octyl-3-propionoate satellite group shows very good antimicrobial activity against Gram-positive bacterial strains. The biocidal polymer was also found to have low hemotoxicity, resulting in a high HC50/MIC value of 120 for S. aureus. Cleaving the ester satellite group resulted in a 30-fold decrease in antimicrobial activity, proving the concept valid. The satellite group could also be cleaved by lipase showing that the antimicrobial activity of the new biocidal polymers is indeed bioswitchable. Biocides are widely used for preventing the spread of microbial infections and the fouling of materials. Since their application can build up microbial resistance and cause unpredictable long-term environmental problems, new biocidal agents are required. In a novel approach an antimicrobial polymer is deactivated by hydrolysis of an ester group through the action of a lipase. The crucial feature is the mutual interaction of the two endgroups of the polymer.