2105-94-4Relevant articles and documents
Influence of the type of halogen substituent on in vivo and in vitro phase II metabolism of 2-fluoro-4-halophenol metabolites formed from 3-halo-fluorobenzenes
Soffers,Veeger,Rietjens
, p. 759 - 774 (1994)
The influence of a change in the type of halogen substituent on phase II metabolism of 2-fluoro-4-halophenol metabolites formed from 3-halo-fluorobenzenes was studied in vivo and in vitro using 19F nmr and spectroscopic assays. The ratio of sulphation to glucuronidation of 2-fluoro-4-halophenol metabolites formed from 3-halofluorobenzenes decreased from 48 to 13 to 6 when the halogen substituent varied from fluorine to chlorine to bromine. When the 2-fluoro-4-halophenols themselves were administered to the rats, the ratio of sulphation to glucuronidation was not affected by the type of halogen substituent at C4 and at a constant value of 0.6, i.e. significantly lower. Kinetic data for P450 catalysed hydroxylation of the 3-halo-fluorobenzenes and for sulphation and glucuronidation of their 2-fluoro-4-halophenol metabolites were obtained from in vitro microsomal and cytosolic incubations. These data demonstrate that the effects of varying the halogen substituent on phase II metabolism of the 2-fluoro-4-halophenol metabolites can be mainly ascribed to an apparently decreased K(m) for the glucuronidation of the 2-fluoro-4-halophenols with a change in the halo substituent from fluorine to chlorine to bromine. Results from calculations on electronic and structural characteristics of the three 4-halo-2-fluorophenols demonstrate that the best explanation for the decrease in the apparent K(m) of the glucuronidation from 2,4-difluoro- to 4-chloro-2-fluoro- to 4-bromo-2-fluorophenol might be an increase in the hydrophobicity of the phenol. An increase in the hydrophobicity of the phenol would provide an increased possibility for substrate accumulation in the hydrophobic membrane environment of the UDP-glucuronyltransferases, resulting in an apparently decreased K(m).
A convenient and efficient H2SO4-promoted regioselective monobromination of phenol derivatives using N-bromosuccinimide
Wu, Yong-Qi,Lu, Hai-Jia,Zhao, Wen-Ting,Zhao, Hong-Yi,Lin, Zi-Yun,Zhang, Dong-Feng,Huang, Hai-Hong
supporting information, p. 813 - 822 (2020/02/15)
A convenient, rapid H2SO4-promoted regioselective monobromination reaction with N-bromosuccinimide was developed. The desired para-monobrominated or ortho-monobrominated products of phenol derivatives were obtained in good to excellent yields with high selectivity. Regioselective chlorination and iodination were also achieved in the presence of H2SO4 using N-chlorosuccinimide and N-iodosuccinimide, respectively.
Regioselective monobromination of phenols with KBr and ZnAl–BrO3?–layered double hydroxides
Wang, Ligeng,Feng, Chun,Zhang, Yan,Hu, Jun
supporting information, (2020/02/22)
The regioselective mono-bromination of phenols has been successfully developed with KBr and ZnAl–BrO3?–layered double hydroxides (abbreviated as ZnAl–BrO3?–LDHs) as brominating reagents. The para site is much favorable and the ortho site takes the priority if para site is occupied. This reaction featured with excellent regioselectivity, cheap brominating reagents, mild reaction condition, high atom economy, broad substrate scope, and provided an efficient method to synthesize bromophenols.
Novel pleconaril derivatives: Influence of substituents in the isoxazole and phenyl rings on the antiviral activity against enteroviruses
Egorova, Anna,Ekins, Sean,Jahn, Birgit,Kazakova, Elena,Makarov, Vadim,Schmidtke, Michaela
, (2019/12/28)
Today, there are no medicines to treat enterovirus and rhinovirus infections. In the present study, a series of novel pleconaril derivatives with substitutions in the isoxazole and phenyl rings was synthesized and evaluated for their antiviral activity against a panel of pleconaril-sensitive and -resistant enteroviruses. Studies of the structure-activity relationship demonstrate the crucial role of the N,N-dimethylcarbamoyl group in the isoxazole ring for antiviral activity against pleconaril-resistant viruses. In addition, one or two substituents in the phenyl ring directly impact on the spectrum of antienteroviral activity. The 3-(3-methyl-4-(3-(3-N,N-dimethylcarbamoyl-isoxazol-5-yl)propoxy)phenyl)-5-trifluoromethyl-1,2,4-oxadiazole 10g was among the compounds exhibiting the strongest activity against pleconaril-resistant as well as pleconaril-susceptible enteroviruses with IC50 values from 0.02 to 5.25 μM in this series. Compound 10g demonstrated markedly less CYP3A4 induction than pleconaril, was non-mutagenic, and was bioavailable after intragastric administration in mice. These results highlight compound 10g as a promising potential candidate as a broad spectrum enterovirus and rhinovirus inhibitor for further preclinical investigations.
Phenol compound ortho-position direct fluorination method
-
Paragraph 0052-0054, (2020/04/17)
The invention relates to a phenol compound ortho-position direct fluorination method which comprises the following steps: reacting a phenol compound shown in a formula (1A) with a fluorination reagentin a solvent under the action of a photocatalyst and a light source at room temperature, and separating and purifying a reaction mixture after the reaction to obtain a fluorinated phenol compound shown in a formula (2A). The advantages are as follows: the method for directly fluorinating phenol by organic photocatalysis is simple in operation process; raw materials are commercialized and easy toobtain; the photocatalyst is low in price, easy to obtain and environmentally friendly; the reaction condition is mild; the site selectivity is high; the reaction is efficient; and a fluorinated phenol derivative can be prepared only through one step.
Mild and Regioselective Bromination of Phenols with TMSBr
Ma, Xiantao,Yu, Jing,Jiang, Mengyuan,Wang, Mengyu,Tang, Lin,Wei, Mengmeng,Zhou, Qiuju
supporting information, p. 4593 - 4596 (2019/07/05)
In this work, an unexpected promoting effect of by-product thioether was observed, leading to a mild and regioselective bromination of phenols with TMSBr. This method can tolerate a series of functional groups such as the reactive methoxyl, amide, fluoro, chloro, bromo, aldehyde, ketone and ester groups, and has the potential to recycle the by-product thioether and isolate the desired product under column chromatography-free conditions. Mechanism studies revealed that O–H···S hydrogen bond may be formed between phenol and by-product thioether. Possibly owing to the steric hindrance effect from by-product thioether, the electrophilic bromination at para-position of phenols is much favorable.
Intermolecular Aryl C?H Amination through Sequential Iron and Copper Catalysis
Mostafa, Mohamed A. B.,Calder, Ewen D. D.,Racys, Daugirdas T.,Sutherland, Andrew
supporting information, p. 1044 - 1047 (2017/02/05)
A mild, efficient and regioselective method for para-amination of activated arenes has been developed through a combination of iron and copper catalysis. A diverse range of products were obtained from an operationally simple one-pot, two-step procedure involving bromination of the aryl substrate with the powerful Lewis acid iron(III) triflimide, followed by a copper(I)-catalysed N-arylation reaction. This two-step dehydrogenative process for the regioselective coupling of aromatic C?H bonds with non-activated amines was applicable to anisole-, phenol-, aniline- and acetanilide-type aryl compounds. Importantly, the arene substrates were used as the limiting reagent and required no protecting-group manipulations during the transformation.
Synthesis of 2 - fluoro phenol compounds
-
, (2017/04/21)
The present invention provides a method for synthetizing a 2-fluoro phenol compound shown in a formula IV. The phenol compound shown in the formula I is prepared into a 2-pyridine oxygroup arene compound shown in a formula II through an Ullmann reaction, the 2-pyridine oxygroup arene compound shown in the formula II is mixed with a palladium catalyst, a fluorinating reagent, an additive and an organic solvent, the mixture is stirred under the temperature of 30-160 DEG C to perform a fluorination reaction to obtain an ortho-position fluoridated 2-pyridine oxygroup arene compound shown in a formula III, and the ortho-position fluoridated 2-pyridine oxygroup arene compound shown in the formula III is prepared into the 2-fluoro phenol compound shown in the formula IV through the action of alkali. The method provided by the present invention has the advantages of mild reaction conditions, simplicity in operations, good substrate adaptability, high fluorination selectivity and the like. The 2-fluoro phenol compound is shown in the figure below.
Selective C-H bond fluorination of phenols with a removable directing group: Late-stage fluorination of 2-phenoxyl nicotinate derivatives
Lou, Shao-Jie,Chen, Qi,Wang, Yi-Feng,Xu, Dan-Qian,Du, Xiao-Hua,He, Jiang-Qi,Mao, Yang-Jie,Xu, Zhen-Yuan
, p. 2846 - 2849 (2015/05/20)
A facile and site-selective C-H bond fluorination of phenols using removable 2-pyridyloxy group as an auxiliary was developed. Alternatively, late-stage C-H bond fluorination of bioactive 2-phenoxyl nicotinate derivatives and diflufenican were also feasible under the present strategy.
Vanadate-dependent bromoperoxidases from Ascophyllum nodosum in the synthesis of brominated phenols and pyrroles
Wischang, Diana,Radlow, Madlen,Hartung, Jens
, p. 11926 - 11940 (2013/09/02)
Bromoperoxidases from the brown alga Ascophyllum nodosum, abbreviated as VBrPO(AnI) and VBrPO(AnII), show 41% sequence homology and differ by a factor of two in the percentage of α-helical secondary structures. Protein monomers organize into homodimers for VBrPO(AnI) and hexamers for VBrPO(AnII). Bromoperoxidase II binds hydrogen peroxide and bromide by approximately one order of magnitude stronger than VBrPO(AnI). In oxidation catalysis, bromoperoxidases I and II turn over hydrogen peroxide and bromide similarly fast, yielding in morpholine-4-ethanesulfonic acid (MES)-buffered aqueous tert-butanol (pH 6.2) molecular bromine as reagent for electrophilic hydrocarbon bromination. Alternative compounds, such as tribromide and hypobromous acid are not sufficiently electrophilic for being directly involved in carbon-bromine bond formation. A decrease in electrophilicity from bromine via hypobromous acid to tribromide correlates in a frontier molecular orbital (FMO) analysis with larger energy gaps between the π-type HOMO of, for example, an alkene and the σ*Br,X-type LUMO of the bromination reagent. By using this approach, the reactivity of substrates and selectivity for carbon-bromine bond formation in reactions mediated by vanadate-dependent bromoperoxidases become predictable, as exemplified by the synthesis of bromopyrroles occurring naturally in marine sponges of the genera Agelas, Acanthella, and Axinella. The Royal Society of Chemistry.