Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1708-82-3

Post Buying Request

1708-82-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1708-82-3 Usage

General Description

CIS-3-HEXENYL ACETATE, also known as leaf alcohol acetate, is a colorless liquid with a pleasant, sweet, green, and fruity odor. It is derived from natural sources such as fruits and plants and is commonly used in the fragrance and flavor industries. It is often added to perfumes, soaps, and household cleaning products for its fresh and fruity scent. Additionally, CIS-3-HEXENYL ACETATE is used as a flavoring agent in food products such as beverages, candies, and baked goods. It is considered safe for consumption in small amounts and is approved for use in food by regulatory agencies.

Check Digit Verification of cas no

The CAS Registry Mumber 1708-82-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,7,0 and 8 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1708-82:
(6*1)+(5*7)+(4*0)+(3*8)+(2*8)+(1*2)=83
83 % 10 = 3
So 1708-82-3 is a valid CAS Registry Number.
InChI:InChI=1/C8H14O2/c1-3-4-5-6-7-10-8(2)9/h4-5H,3,6-7H2,1-2H3/b5-4-

1708-82-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name trans-3-Hexenyl acetate

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Fragrances
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1708-82-3 SDS

1708-82-3Downstream Products

1708-82-3Relevant articles and documents

-

Landgrebe,J.A.,Becker,L.W.

, p. 395 - 400 (1968)

-

Identification of (Z)-3:(E)-2-Hexenal isomerases essential to the production of the leaf aldehyde in plants

Kunishima, Mikiko,Yamauchi, Yasuo,Mizutani, Masaharu,Kuse, Masaki,Takikawa, Hirosato,Sugimoto, Yukihiro

, p. 14023 - 14033 (2016)

The green odor of plants is characterized by green leaf volatiles (GLVs) composed of C6 compounds. GLVs are biosynthesized from polyunsaturated fatty acids in thylakoid membranes by a series of enzymes. A representative member of GLVs (E)-2-hexenal, known as the leaf aldehyde, has been assumed to be produced by isomerization from (Z)-3-hexenal in the biosynthesis pathway; however, the enzyme has not yet been identified. In this study, we purified the (Z)-3:(E)-2-hexenal isomerase (HI) from paprika fruits and showed that various plant species have homologous HIs. Purified HI is a homotrimeric protein of 110 kDa composed of 35-kDa subunits and shows high activity at acidic and neutral pH values. Phylogenetic analysis showed that HIs belong to the cupin superfamily, and at least three catalytic amino acids (His, Lys, Tyr) are conserved in HIs of various plant species. Enzymatic isomerization of (Z)-3-hexenal in the presence of deuterium oxide resulted in the introduction of deuterium at the C4 position of (E)-2-hexenal, and a suicide substrate 3-hexyn-1-al inhibited HI irreversibly, suggesting that the catalytic mode of HI is a keto-enol tautomerism reaction mode mediated by a catalytic His residue. The gene expression of HIs in Solanaceae plants was enhanced in specific developmental stages and by wounding treatment. Transgenic tomato plants overexpressing paprika HI accumulated (E)-2-hexenal in contrast to wild-type tomato plants mainly accumulating (Z)-3-hexenal, suggesting that HI plays a key role in the production of (E)-2-hexenal in planta.

Scalable green approach toward fragrant acetates

Puchl'Ová, Eva,Szolcsányi, Peter

supporting information, (2020/08/07)

The advantageous properties of ethylene glycol diacetate (EGDA) qualify it as a useful substitute for glycerol triacetate (GTA) for various green applications. We scrutinised the lipase-mediated acetylation of structurally diverse alcohols in neat EGDA furnishing the range of naturally occurring fragrant acetates. We found that such enzymatic system exhibits high reactivity and selectivity towards activated (homo) allylic and non-activated primary/secondary alcohols. This feature was utilised in the scalable multigram synthesis of fragrant (Z)-hex-3-en-1-yl acetate in 70percent yield. In addition, the Lipozyme 435/EGDA system was also found to be applicable for the chemo-selective acetylation of (hydroxyalkyl) phenols as well as for the kinetic resolution of chiral secondary alcohols. Lastly, its discrimination power was demonstrated in competitive experiments of equimolar mixtures of two isomeric alcohols. This enabled the practical synthesis of 1-pentyl acetate isolated as a single product in 68percent yield from the equimolar mixture of 1-pentanol and 3-pentanol.

Parameters affecting the synthesis of (Z)-3-hexen-1-yl acetate by transesterifacation in organic solvent

Liaquat, Muhammad,Mehmood, Talat,Khan, Sami-Ullah,Ahmed, Zahoor,Saeed, Muhammad,Aslam, Sher,Khan, Junaid,Ali, Naushad,Nawaz, Mohsan,Jahangir, Muhammad

, p. 323 - 334 (2015/05/27)

Summary: (Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Crude acetone powders extracted lipases from five plant seedlings of rapeseed, wheat, barley, linseed and maize were investigated for their use in the synthesis of flavor esters with vinyl acetate by transesterification in organic solvents. Rape seedlings showed the highest degree of (Z)-3-hexen-1-yl acetate synthesis with a yield of 76% in 72 h. Rape seedling was chosen as promising biocatalyst to evaluate the effects of some of reaction parameters on (Z)-3-hexen-1-yl acetate synthesis using vinyl acetate and (Z)-3-hexen-1-ol at 40 °C in n-hexane with 50 g/L enzyme as catalyst. Acetonitrile proved distinctly superior solvent. The percent remaining activity relative to fresh seedlings powders was highest in wheat and barley. Highest ester yield of 80% was obtained with 0.8 M of substrate concentrations within 48 h. Crude rapeseed lipase afforded a conversion 93% of ethyl alcohol. Higher ester yield was achieved within first 24 h with added molecular. The crude rape seedlings lipase is low cost yet effective, showed potential for the production of green note esters industrially.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1708-82-3