928-96-1Relevant articles and documents
Dahill
, p. 399 (1972)
Accelerated Semihydrogenation of Alkynes over a Copper/Palladium/Titanium (IV) Oxide Photocatalyst Free from Poison and H2 Gas
Imai, Shota,Nakanishi, Kousuke,Tanaka, Atsuhiro,Kominami, Hiroshi
, p. 1609 - 1616 (2020/02/15)
Selective hydrogenation of alkynes to alkenes (semihydrogenation) without the use of a poison and H2 is challenging because alkenes are easily hydrogenated to alkanes. In this study, a titanium (IV) oxide photocatalyst having Pd core-Cu shell nanoparticles (Pd@Cu/TiO2) was prepared by using the two-step photodeposition method, and Pd@Cu/TiO2 samples having various Cu contents were characterized by electron transmission microscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy. Thus-prepared Pd@Cu/TiO2 samples were used for photocatalytic hydrogenation of 4-octyne in alcohol and the catalytic properties were compared with those of Pd/TiO2 and Cu/TiO2. 4-Octyne was fully hydrogenated to octane over Pd/TiO2 at a high rate and 4-octyne was semihydrogenated to cis-4-octene over Cu/TiO2 at a low rate. Rapid semihydrogenation of 4-octyne was achieved over Pd(0.2 mol%)@Cu(1.0 mol%)/TiO2, indicating that the Pd core greatly activated the Cu shell that acted as reaction sites. A slight increase in the reaction temperature greatly increased the rate with a suppressed rate of H2 evolution as the side reaction. Changes in the reaction rates of the main and side reactions are discussed on the basis of results of kinetic studies. Reusability and expandability of Pd@Cu/TiO2 in semihydrogenation are also discussed.
Visible light-induced diastereoselective semihydrogenation of alkynes to cis-alkenes over an organically modified titanium(IV) oxide photocatalyst having a metal co-catalyst
Fukui, Makoto,Omori, Yuya,Kitagawa, Shin-ya,Tanaka, Atsuhiro,Hashimoto, Keiji,Kominami, Hiroshi
, p. 36 - 42 (2019/05/04)
Hydrogen (H2)-free and poison (lead and quinoline)-free semihydrogenation of alkynes to cis-alkenes under gentle conditions is one of the challenges to be solved. In this study, a titanium(IV) oxide photocatalyst having two functions (visible light responsiveness and semihydrogenation activity) was prepared by modification with 2,3-dihydroxynaphthalene (DHN) and a copper (Cu) co-catalyst, respectively. The photocatalyst (DHN/TiO2-Cu) showed high performance for diastereoselective semihydrogenation of alkynes to cis-alkenes in water-acetonitrile solution under visible light irradiation without the use of H2 and poisons. Alkynes having reducible functional groups were converted to the corresponding alkenes with the functional groups being preserved. The addition of water to acetonitrile changed the amount of alkynes adsorbed on the photocatalyst, which was a decisive factor determining the rate of hydrogenation. A relatively large apparent activation energy, 27 kJ mol?1, was obtained by a kinetic study, indicating that the rate-determining step of this reaction was not an electron production process but a thermal catalytic semihydrogenation process over the Cu co-catalyst. Semihydrogenation and hydrogen evolution occurred competitively on Cu metals and the former became predominant at slightly elevated temperatures, which is discussed on the basis of the kinetic parameters of two reactions.