Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5877-51-0

Post Buying Request

5877-51-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5877-51-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5877-51-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,8,7 and 7 respectively; the second part has 2 digits, 5 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 5877-51:
(6*5)+(5*8)+(4*7)+(3*7)+(2*5)+(1*1)=130
130 % 10 = 0
So 5877-51-0 is a valid CAS Registry Number.

5877-51-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-bromophenyl)-N-phenylmethanimine

1.2 Other means of identification

Product number -
Other names (E)-N-(4-Bromobenzylidene)aniline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5877-51-0 SDS

5877-51-0Relevant articles and documents

Visible-Light-Induced Cycloaddition of α-Ketoacylsilanes with Imines: Facile Access to β-Lactams

Ye, Jian-Heng,Bellotti, Peter,Paulisch, Tiffany O.,Daniliuc, Constantin G.,Glorius, Frank

supporting information, p. 13671 - 13676 (2021/05/11)

We report the synthesis of β-lactams from α-ketoacylsilanes and imines, which proceeds via a formal [2+2] photochemical cycloaddition with in situ generation of siloxyketene. This mild and operationally simple reaction proceeds in an atom-economic fashion with broad substrate scope, including aldimines, ketimines, hydrazones, and fused nitrogen heterocycles, affording a variety of important β-lactams with satisfactory diastereoselectivities in most cases. This reaction also features good functional-group tolerance, facile scalability and product diversification. Experimental and computational studies suggest that α-ketoacylsilanes can serve as photochemical precursors by engaging in a 1,3 silicon shift to the distal carbonyl group.

A novel water-dispersible and magnetically recyclable nickel nanoparticles for the one-pot reduction-Schiff base condensation of nitroarenes in pure water

Ghamari Kargar, Pouya,Ravanjamjah, Asiye,Bagherzade, Ghodsieh

, p. 1916 - 1933 (2021/07/10)

In this work, a heterogeneous nanocatalyst called Ni-Fe3O4@Pectin~PPA ~ Piconal was first synthesized, which was investigated as a bifunctional catalyst containing nickel functional groups. On the other hand, this Ni-Fe3O4@Pectin~PPA ~ Piconal catalyst in aqueous solvents shows a very effective performance at ambient temperature for the nitroarene reduction reaction with sodium borohydride, for which NaBH4 is considered as a reducing agent. This is a novelty magnetic catalyst that was approved by various methods, including Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Dynamic light scattering (DLS), Transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), Inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), and Field emission scanning electron microscopy (FESEM) analyses. From the satisfactory results obtained from the reduction of nitrogen, this catalytic system is used for a one-pot protocol containing a reduction-Schiff base concentration of diverse nitroarenes. It was corroborated with the heterogeneous catalytic experiments on the one-pot tandem synthesis of imines from nitroarenes and aldehydes. Finally, the novel Ni-Fe3O4@Pectin~PPA ~ Piconal catalyst could function as a more economically desirable and environmentally amicable in the catalysis field. The favorable products are acquired in good to high performance in the attendance of Ni-Fe3O4@Pectin~PPA ~ Piconal as a bifunctional catalyst. This catalyst can be recycled up to six steps without losing a sharp drop.

Ionic-Liquid-Catalyzed Synthesis of Imines, Benzimidazoles, Benzothiazoles, Quinoxalines and Quinolines through C?N, C?S, and C?C Bond Formation

Adimurthy, Subbarayappa,Badhani, Gaurav,Joshi, Abhisek

, p. 6705 - 6716 (2021/12/31)

We report the tetramethyl ammonium hydroxide catalyzed oxidative coupling of amines and alcohols for the synthesis of imines under metal-free conditions by utilizing oxygen from air as the terminal oxidant. Under the same conditions, with ortho-phenylene diamines and 2-aminobenzenethiols the corresponding benzimidazoles and benzothiazoles were obtained. Quinoxalines were obtained from ortho-phenylene diamines and 1-phenylethane-1,2-diol, the conditions were then extended to the synthesis of quinoline building blocks by reaction of 2-amino benzyl alcohols either with 1-phenylethan-1-ol or acetophenone derivatives. The formation of C?N, C?S and C?C bonds was achieved under metal-free conditions. A broad range of amines (aromatic, aliphatic, cyclic and heteroaromatic) as well as benzylic alcohols including heteroaryl alcohols reacted smoothly and provided the desired products. The mild reaction conditions, commercially available catalyst, metal-free, good functional-group tolerance, broad range of products (imines, benzimidazoles, benzothiazoles, quinoxalines and quinolines) and applicability at gram scale reactions are the advantages of the present strategy.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5877-51-0