873-75-6Relevant articles and documents
Green synthesis of metal oxide nanoparticles and their catalytic activity for the reduction of aldehydes
Muthuvinothini,Stella
, p. 48 - 56 (2019)
In the present work, a green synthesis of Metal Oxide nanoparticles was demonstrated using the freshly prepared aqueous extract of the immature fruit of Cocos nucifera and the MO nanoparticles were characterized by the analytical techniques such as UV–vis, FT-IR, XRD, SEM, TEM and EDAX. Characterization techniques confirmed that the biomolecules involved in the formation of nanoparticles and also they stabilized the nanoparticles. The synthesized MO nanoparticles were used as catalysts for the reduction of aromatic aldehydes. The reduction was done at mild reaction conditions using ammonium formate as a green hydrogen donor and the corresponding alcohols were obtained in 2–24 h with excellent yields. The reduction reaction was optimized using various solvents, loading of catalyst and at different temperatures.
Hydrogenation of Esters by Manganese Catalysts
Li, Fu,Li, Xiao-Gen,Xiao, Li-Jun,Xie, Jian-Hua,Xu, Yue,Zhou, Qi-Lin
, (2022/01/13)
The hydrogenation of esters catalyzed by a manganese complex of phosphine-aminopyridine ligand was developed. Using this protocol, a variety of (hetero)aromatic and aliphatic carboxylates including biomass-derived esters and lactones were hydrogenated to primary alcohols with 63–98% yields. The manganese catalyst was found to be active for the hydrogenation of methyl benzoate, providing benzyl alcohol with turnover numbers (TON) as high as 45,000. Investigation of catalyst intermediates indicated that the amido manganese complex was the active catalyst species for the reaction. (Figure presented.).
BiCl3-Facilitated removal of methoxymethyl-ether/ester derivatives and DFT study of -O-C-O- bond cleavage
Pacherille, Angela,Tuga, Beza,Hallooman, Dhanashree,Dos Reis, Isaac,Vermette, Mélodie,Issack, Bilkiss B.,Rhyman, Lydia,Ramasami, Ponnadurai,Sunasee, Rajesh
supporting information, p. 7109 - 7116 (2021/05/03)
A simple method for the cleavage of methoxymethyl (MOM)-ether and ester derivatives using bismuth trichloride (BiCl3) is described. The alkyl, alkenyl, alkynyl, benzyl and anthracene MOM ether derivatives, as well as MOM esters of both aliphatic and aromatic carboxylic acids, were deprotected in good yields. To better understand the molecular roles of BiCl3and water for MOM cleavage, two possible binding pathways were investigated using the density functional theory (DFT) method. The theoretical results indicate the differential initial binding site preferences of phenolic and alcoholic MOM substrates to the Bi atom and suggest that water plays a key role in facilitating the cleavage of the MOM group.
Hydrosilylation of Aldehydes and Ketones Catalyzed by a 2-Iminopyrrolyl Alkyl-Manganese(II) Complex
Cruz, Tiago F. C.,Gomes, Pedro T.,Veiros, Luís F.
, (2022/01/11)
A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(μ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.