Welcome to LookChem.com Sign In|Join Free

CAS

  • or

89-95-2

Post Buying Request

89-95-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

89-95-2 Usage

Description

2-Methylbenzyl alcohol, also known as o-Cresol methyl ether, is an organic compound with the chemical formula C8H10O. It is a colorless liquid with a distinctive aromatic odor. The molecule consists of a benzene ring with a methyl group attached to the second carbon and a benzyl alcohol group attached to the first carbon. It is soluble in water and various organic solvents.

Uses

Used in Pharmaceutical Industry:
2-Methylbenzyl alcohol is used as a starting material for the synthesis of various pharmaceutical compounds, including antibiotics, anti-inflammatory drugs, and analgesics. Its unique chemical structure allows for the formation of a wide range of derivatives with potential therapeutic applications.
Used in Flavor and Fragrance Industry:
2-Methylbenzyl alcohol is used as a fragrance ingredient in the production of perfumes, colognes, and other scented products. Its pleasant aroma and stability make it a popular choice for creating various scent profiles.
Used in Chemical Synthesis:
2-Methylbenzyl alcohol is used as an intermediate in the synthesis of various organic compounds, such as dyes, plastics, and resins. Its versatility as a building block allows for the creation of a diverse range of products.
Used in High-Performance Liquid Chromatography (HPLC):
2-Methylbenzyl alcohol is widely used as a strong mobile phase additive in HPLC. It helps to improve the separation and resolution of complex mixtures, making it an essential component in analytical chemistry.
Used in the Production of 2-Methylbenzaldehyde:
2-Methylbenzyl alcohol can be converted to 2-methyl-benzaldehyde at a temperature of 20°C using the reagent pyridinium chlorochromate with a reaction time of 10 minutes. This conversion is useful for the production of various chemical intermediates and specialty chemicals.

Synthesis Reference(s)

Chemistry Letters, 22, p. 1495, 1993Journal of the American Chemical Society, 62, p. 2639, 1940 DOI: 10.1021/ja01867a017Organic Syntheses, Coll. Vol. 4, p. 582, 1963

Check Digit Verification of cas no

The CAS Registry Mumber 89-95-2 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 8 and 9 respectively; the second part has 2 digits, 9 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 89-95:
(4*8)+(3*9)+(2*9)+(1*5)=82
82 % 10 = 2
So 89-95-2 is a valid CAS Registry Number.
InChI:InChI=1/C8H10O/c1-7-4-2-3-5-8(7)6-9/h2-5,9H,6H2,1H3

89-95-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12696)  2-Methylbenzyl alcohol, 98%   

  • 89-95-2

  • 10g

  • 212.0CNY

  • Detail
  • Alfa Aesar

  • (A12696)  2-Methylbenzyl alcohol, 98%   

  • 89-95-2

  • 50g

  • 725.0CNY

  • Detail
  • Alfa Aesar

  • (A12696)  2-Methylbenzyl alcohol, 98%   

  • 89-95-2

  • 250g

  • 2908.0CNY

  • Detail

89-95-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Methylbenzyl Alcohol

1.2 Other means of identification

Product number -
Other names (2-methylphenyl)methanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:89-95-2 SDS

89-95-2Relevant articles and documents

Experimental and theoretical study of the effect of active-site constrained substrate motion on the magnitude of the observed intramolecular isotope effect for the P450 101 catalyzed benzylic hydroxylation of isomeric xylenes and 4,4'-dimethylbiphenyl

Audergon, Christian,Iyer, Krishna R.,Jones, Jeffrey P.,Darbyshire, John F.,Trager, William F.

, p. 41 - 47 (1999)

The validity of a cytochrome P450 (P450) 101 force field developed previously was tested by comparing to published results from other laboratories the predicted regioselectivity and stereoselectivity of both (R)- and (S)-norcamphor oxidation when the force field was used. Once validated, the force field was used to test the hypothesis that the magnitude of an observed intramolecular isotope effect is a function of the distance between equivalent but isotopically distinct intramolecular sites of oxidative attack. Molecular dynamics simulations and kinetic deuterium isotope effect experiments on benzylic hydroxylation were then conducted for a series of selectively deuterated isomeric xylenes and 4,4'-dimethylbiphenyl with P450 101. The molecular dynamics simulations predicted that the rank order of substrate mobility in the active site of P450 101 was o-xylene > p- xylene > dimethylbiphenyl. The observed isotope effects for the trideutero analogues were 10.6, 7.4, and 2.7, for the o-xylene, p-xylene, and 4,4'- dimethylbiphenyl, respectively. Thus, as the theoretically predicted rates of interchange between the isotopically distinct methyl groups decrease, the observed isotope effect decreases. The agreement between the theoretical predictions and experimental results provides strong support for the distance hypothesis stated above and for the potential of computational analysis to enhance our understanding of protein/small molecule interactions.

Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH2(BH3)2, a Hydroboration Reagent with Reducing Capability between NaBH4and LiAlH4

Wang, Jin,Ju, Ming-Yue,Wang, Xinghua,Ma, Yan-Na,Wei, Donghui,Chen, Xuenian

, p. 5305 - 5316 (2021/04/12)

Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH= CHCOOBH2NH2BH3-, PhCH= CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.

Reaction of Diisobutylaluminum Borohydride, a Binary Hydride, with Selected Organic Compounds Containing Representative Functional Groups

Amberchan, Gabriella,Snelling, Rachel A.,Moya, Enrique,Landi, Madison,Lutz, Kyle,Gatihi, Roxanne,Singaram, Bakthan

supporting information, p. 6207 - 6227 (2021/05/06)

The binary hydride, diisobutylaluminum borohydride [(iBu)2AlBH4], synthesized from diisobutylaluminum hydride (DIBAL) and borane dimethyl sulfide (BMS) has shown great potential in reducing a variety of organic functional groups. This unique binary hydride, (iBu)2AlBH4, is readily synthesized, versatile, and simple to use. Aldehydes, ketones, esters, and epoxides are reduced very fast to the corresponding alcohols in essentially quantitative yields. This binary hydride can reduce tertiary amides rapidly to the corresponding amines at 25 °C in an efficient manner. Furthermore, nitriles are converted into the corresponding amines in essentially quantitative yields. These reactions occur under ambient conditions and are completed in an hour or less. The reduction products are isolated through a simple acid-base extraction and without the use of column chromatography. Further investigation showed that (iBu)2AlBH4 has the potential to be a selective hydride donor as shown through a series of competitive reactions. Similarities and differences between (iBu)2AlBH4, DIBAL, and BMS are discussed.

Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of α,β-Unsaturated Carbonyl Compounds

Padmanaban, Sudakar,Gunasekar, Gunniya Hariyanandam,Yoon, Sungho

supporting information, p. 6881 - 6888 (2021/03/01)

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of α,β-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h-1) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of α,β-unsaturated carbonyl compounds.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 89-95-2