930-46-1Relevant articles and documents
One-Pot Enzymatic Synthesis of Cyclic Vicinal Diols from Aliphatic Dialdehydes via Intramolecular C?C Bond Formation and Carbonyl Reduction Using Pyruvate Decarboxylases and Alcohol Dehydrogenases
Zhang, Yan,Yao, Peiyuan,Cui, Yunfeng,Wu, Qiaqing,Zhu, Dunming
supporting information, p. 4191 - 4196 (2018/09/25)
An enzymatic cascade reaction was developed for one-pot enantioselective conversion of aliphatic dialdehydes to chiral vicinal diols using pyruvate decarboxylases (PDCs) and alcohol dehydrogenases (ADHs). The PDCs showed promiscuity in catalysing the cyclization of aliphatic dialdehydes through intramolecular stereoselective carbon-carbon bond formation. Consequently, 1,2-cyclopentanediols in three different stereoisomeric forms and 1,2-cyclohexanediols in two different stereoisomeric forms could be prepared with high conversion and stereoisomeric ratio from the respective initial substrates, glutaraldehyde and adipaldehyde. These cascade reactions represent a promising approach to the biocatalytic synthesis of important chiral vicinal diols. (Figure presented.).
Hydrogen Bonding-Assisted Enhancement of the Reaction Rate and Selectivity in the Kinetic Resolution of d,l-1,2-Diols with Chiral Nucleophilic Catalysts
Fujii, Kazuki,Mitsudo, Koichi,Mandai, Hiroki,Suga, Seiji
supporting information, p. 2778 - 2788 (2017/08/23)
An extremely efficient acylative kinetic resolution of d,l-1,2-diols in the presence of only 0.5 mol% of binaphthyl-based chiral N,N-4-dimethylaminopyridine was developed (selectivity factor of up to 180). Several key experiments revealed that hydrogen bonding between the tert-alcohol unit(s) of the catalyst and the 1,2-diol unit of the substrate is critical for accelerating the rate of monoacylation and achieving high enantioselectivity. This catalytic system can be applied to a wide range of substrates involving racemic acyclic and cyclic 1,2-diols with high selectivity factors. The kinetic resolution of d,l-hydrobenzoin and trans-1,2-cyclohexanediol on a multigram scale (10 g) also proceeded with high selectivity and under moderate reaction conditions: (i) very low catalyst loading (0.1 mol%); (ii) an easily achievable low reaction temperature (0 °C); (iii) high substrate concentration (1.0 M); and (iv) short reaction time (30 min). (Figure presented.).
Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis
Sun, Zhoutong,Lonsdale, Richard,Li, Guangyue,Reetz, Manfred T.
, p. 1865 - 1872 (2016/11/06)
Saturation mutagenesis at sites lining the binding pockets of enzymes constitutes a viable protein engineering technique for enhancing or inverting stereoselectivity. Statistical analysis shows that oversampling in the screening step (the bottleneck) increases astronomically as the number of residues in the randomization site increases, which is the reason why reduced amino acid alphabets have been employed, in addition to splitting large sites into smaller ones. Limonene epoxide hydrolase (LEH) has previously served as the experimental platform in these methodological efforts, enabling comparisons between single-code saturation mutagenesis (SCSM) and triple-code saturation mutagenesis (TCSM); these employ either only one or three amino acids, respectively, as building blocks. In this study the comparative platform is extended by exploring the efficacy of double-code saturation mutagenesis (DCSM), in which the reduced amino acid alphabet consists of two members, chosen according to the principles of rational design on the basis of structural information. The hydrolytic desymmetrization of cyclohexene oxide is used as the model reaction, with formation of either (R,R)- or (S,S)-cyclohexane-1,2-diol. DCSM proves to be clearly superior to the likewise tested SCSM, affording both R,R- and S,S-selective mutants. These variants are also good catalysts in reactions of further substrates. Docking computations reveal the basis of enantioselectivity.