930-46-1Relevant articles and documents
One-Pot Enzymatic Synthesis of Cyclic Vicinal Diols from Aliphatic Dialdehydes via Intramolecular C?C Bond Formation and Carbonyl Reduction Using Pyruvate Decarboxylases and Alcohol Dehydrogenases
Zhang, Yan,Yao, Peiyuan,Cui, Yunfeng,Wu, Qiaqing,Zhu, Dunming
supporting information, p. 4191 - 4196 (2018/09/25)
An enzymatic cascade reaction was developed for one-pot enantioselective conversion of aliphatic dialdehydes to chiral vicinal diols using pyruvate decarboxylases (PDCs) and alcohol dehydrogenases (ADHs). The PDCs showed promiscuity in catalysing the cyclization of aliphatic dialdehydes through intramolecular stereoselective carbon-carbon bond formation. Consequently, 1,2-cyclopentanediols in three different stereoisomeric forms and 1,2-cyclohexanediols in two different stereoisomeric forms could be prepared with high conversion and stereoisomeric ratio from the respective initial substrates, glutaraldehyde and adipaldehyde. These cascade reactions represent a promising approach to the biocatalytic synthesis of important chiral vicinal diols. (Figure presented.).
Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations
Sun, Zhoutong,Wu, Lian,Bocola, Marco,Chan, H. C. Stephen,Lonsdale, Richard,Kong, Xu-Dong,Yuan, Shuguang,Zhou, Jiahai,Reetz, Manfred T.
supporting information, p. 310 - 318 (2018/01/17)
Directed evolution of limonene epoxide hydrolase (LEH), which catalyzes the hydrolytic desymmetrization reactions of cyclopentene oxide and cyclohexene oxide, results in (R,R)- and (S,S)-selective mutants. Their crystal structures combined with extensive theoretical computations shed light on the mechanistic intricacies of this widely used enzyme. From the computed activation energies of various pathways, we discover the underlying stereochemistry for favorable reactions. Surprisingly, some of the most enantioselective mutants that rapidly convert cyclohexene oxide do not catalyze the analogous transformation of the structurally similar cyclopentene oxide, as shown by additional X-ray structures of the variants harboring this slightly smaller substrate. We explain this puzzling observation on the basis of computational calculations which reveal a disrupted alignment between nucleophilic water and cyclopentene oxide due to the pronounced flexibility of the binding pocket. In contrast, in the stereoselective reactions of cyclohexene oxide, reactive conformations are easily reached. The unique combination of structural and computational data allows insight into mechanistic details of this epoxide hydrolase and provides guidance for future protein engineering in reactions of structurally different substrates.
Hydrogen Bonding-Assisted Enhancement of the Reaction Rate and Selectivity in the Kinetic Resolution of d,l-1,2-Diols with Chiral Nucleophilic Catalysts
Fujii, Kazuki,Mitsudo, Koichi,Mandai, Hiroki,Suga, Seiji
supporting information, p. 2778 - 2788 (2017/08/23)
An extremely efficient acylative kinetic resolution of d,l-1,2-diols in the presence of only 0.5 mol% of binaphthyl-based chiral N,N-4-dimethylaminopyridine was developed (selectivity factor of up to 180). Several key experiments revealed that hydrogen bonding between the tert-alcohol unit(s) of the catalyst and the 1,2-diol unit of the substrate is critical for accelerating the rate of monoacylation and achieving high enantioselectivity. This catalytic system can be applied to a wide range of substrates involving racemic acyclic and cyclic 1,2-diols with high selectivity factors. The kinetic resolution of d,l-hydrobenzoin and trans-1,2-cyclohexanediol on a multigram scale (10 g) also proceeded with high selectivity and under moderate reaction conditions: (i) very low catalyst loading (0.1 mol%); (ii) an easily achievable low reaction temperature (0 °C); (iii) high substrate concentration (1.0 M); and (iv) short reaction time (30 min). (Figure presented.).
Chiral-Substituted Poly-N-vinylpyrrolidinones and Bimetallic Nanoclusters in Catalytic Asymmetric Oxidation Reactions
Hao, Bo,Gunaratna, Medha J.,Zhang, Man,Weerasekara, Sahani,Seiwald, Sarah N.,Nguyen, Vu T.,Meier, Alex,Hua, Duy H.
supporting information, p. 16839 - 16848 (2017/01/10)
A new class of poly-N-vinylpyrrolidinones containing an asymmetric center at C5 of the pyrrolidinone ring were synthesized from l-amino acids. The polymers, particularly 17, were used to stabilize nanoclusters such as Pd/Au for the catalytic asymmetric oxidations of 1,3- and 1,2-cycloalkanediols and alkenes, and Cu/Au was used for C-H oxidation of cycloalkanes. It was found that the bulkier the C5 substituent in the pyrrolidinone ring, the greater the optical yields produced. Both oxidative kinetic resolution of (±)-1,3- and 1,2-trans-cycloalkanediols and desymmetrization of meso cis-diols took place with 0.15 mol % Pd/Au (3:1)-17 under oxygen atmosphere in water to give excellent chemical and optical yields of (S)-hydroxy ketones. Various alkenes were oxidized with 0.5 mol % Pd/Au (3:1)-17 under 30 psi of oxygen in water to give the dihydroxylated products in >93% ee. Oxidation of (R)-limonene at 25 °C occurred at the C-1,2-cyclic alkene function yielding (1S,2R,4R)-dihydroxylimonene 49 in 92% yield. Importantly, cycloalkanes were oxidized with 1 mol % Cu/Au (3:1)-17 and 30% H2O2 in acetonitrile to afford chiral ketones in very good to excellent chemical and optical yields. Alkene function was not oxidized under the reaction conditions. Mechanisms were proposed for the oxidation reactions, and observed stereo- and regio-chemistry were summarized.
Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis
Sun, Zhoutong,Lonsdale, Richard,Li, Guangyue,Reetz, Manfred T.
, p. 1865 - 1872 (2016/11/06)
Saturation mutagenesis at sites lining the binding pockets of enzymes constitutes a viable protein engineering technique for enhancing or inverting stereoselectivity. Statistical analysis shows that oversampling in the screening step (the bottleneck) increases astronomically as the number of residues in the randomization site increases, which is the reason why reduced amino acid alphabets have been employed, in addition to splitting large sites into smaller ones. Limonene epoxide hydrolase (LEH) has previously served as the experimental platform in these methodological efforts, enabling comparisons between single-code saturation mutagenesis (SCSM) and triple-code saturation mutagenesis (TCSM); these employ either only one or three amino acids, respectively, as building blocks. In this study the comparative platform is extended by exploring the efficacy of double-code saturation mutagenesis (DCSM), in which the reduced amino acid alphabet consists of two members, chosen according to the principles of rational design on the basis of structural information. The hydrolytic desymmetrization of cyclohexene oxide is used as the model reaction, with formation of either (R,R)- or (S,S)-cyclohexane-1,2-diol. DCSM proves to be clearly superior to the likewise tested SCSM, affording both R,R- and S,S-selective mutants. These variants are also good catalysts in reactions of further substrates. Docking computations reveal the basis of enantioselectivity.
Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase
Sun, Zhoutong,Lonsdale, Richard,Wu, Lian,Li, Guangyue,Li, Aitao,Wang, Jianbo,Zhou, Jiahai,Reetz, Manfred T.
, p. 1590 - 1597 (2016/03/15)
The directed evolution of enzymes promises to eliminate the long-standing limitations of biocatalysis in organic chemistry and biotechnology - the often-observed limited substrate scope, insufficient activity, and poor regioselectivity or stereoselectivity. Saturation mutagenesis at sites lining the binding pocket with formation of focused libraries has emerged as the technique of choice, but choosing the optimal size of the randomization site and reduced amino acid alphabet for minimizing the labor-determining screening effort remains a challenge. Here, we introduce structure-guided triple-code saturation mutagenesis (TCSM) by encoding three rationally chosen amino acids as building blocks in the randomization of large multiresidue sites. In contrast to conventional NNK codon degeneracy encoding all 20 canonical amino acids and requiring the screening of more than 1015 transformants for 95% library coverage, TCSM requires only small libraries not exceeding 200-800 transformants in one library. The triple code utilizes structural (X-ray) and consensus-derived sequence data, and is therefore designed to match the steric and electrostatic characteristics of the particular enzyme. Using this approach, limonene epoxide hydrolase has been successfully engineered as stereoselective catalysts in the hydrolytic desymmetrization of meso-type epoxides with formation of either (R,R)- or (S,S)-configurated diols on an optional basis and kinetic resolution of chiral substrates. Crystal structures and docking computations support the source of notably enhanced and inverted enantioselectivity.
Mixing and matching chiral cobalt- and manganese-based calix-salen catalysts for the asymmetric hydrolytic ring opening of epoxides
Dandachi, Hiba,Zaborova, Elena,Kolodziej, Emilie,David, Olivier R.P.,Hannedouche, Jér?me,Mellah, Mohamed,Jaber, Nada,Schulz, Emmanuelle
, p. 246 - 253 (2017/03/01)
Homochiral oligomeric salen macrocycles possessing aromatic spacers have been prepared as new calix-salen derivatives. The corresponding cobalt and manganese complexes were synthesized and characterized, and their catalytic activities have been studied in the challenging hydrolysis of meso epoxides. While manganese calix-salen complexes were not active in the studied reactions, the dual heterobimetallic system, using an equimolar combination of cobalt and manganese calix-salen derivatives proved to be more enantioselective than the sole cobalt system. Furthermore, as heterogeneous complexes, the catalytic mixture could be easily recovered by simple filtration and successfully reengaged in subsequent catalytic runs. Interestingly, no need for cobalt reactivation was noticed to maintain maximum efficiency of this dual system. The matched Co/Mn dual catalyst was also used to promote the dynamic hydrolytic kinetic resolution of epibromohydrin.
Microstructure Analysis of Poly(cyclopentene carbonate)s at the Diad Level
Liu, Ye,Li, Rong-Rong,Lu, Xiao-Bing
, p. 6941 - 6947 (2015/10/28)
The spectroscopic assignment of poly(cyclopentene carbonate)s at the diad level was performed by using two kinds of model compounds: isotactic and syndiotactic dimers of cyclopentene carbonate unit. By comparing the signals in the carbonyl region, we concluded that the signals at 153.85 and 153.78 ppm in the 13C NMR spectrum of poly(cyclopentene carbonate) were attributed to m-diad and r-diad, respectively. The signals at 82.61 and 82.53 ppm in the 13C NMR spectrum were assigned to m-diad and r-diad peak of methine resonance, respectively. It was found that the carbonate carbon signals were sensitive toward the stereocenters on adjacent epoxide ring-opening units. The syndiotactic and isotactic diads matched well with the microstructures of the stereoregular poly(cyclopentene carbonate)s that were prepared by using chiral dinuclear Co(III) complex catalysts.
Enantioselective Cascade Biocatalysis via Epoxide Hydrolysis and Alcohol Oxidation: One-Pot Synthesis of (R)-α-Hydroxy Ketones from Meso- or Racemic Epoxides
Zhang, Jiandong,Wu, Shuke,Wu, Jinchuan,Li, Zhi
, p. 51 - 58 (2015/04/27)
A new type of cascade biocatalysis was developed for one-pot enantioselective conversion of a meso- or racemic epoxide to an α-hydroxy ketone in high ee via an epoxide hydrolase-catalyzed hydrolysis of the epoxide, an alcohol dehydrogenase-catalyzed oxidation of the diol intermediate, and an enzyme-catalyzed cofactor regeneration. In vitro cascade biotransformation of meso-epoxides (cyclopentene oxide 1a, cyclohexene oxide 1b, and cycloheptene oxide 1c) was achieved with cell-free extracts containing recombinant SpEH (epoxide hydrolase from Sphingomonas sp. HXN-200), BDHA (butanediol dehydrogenase from Bacillus subtilis BGSC1A1), and LDH (lactate dehydrogenase form Bacillus subtilis) or NOX (NADH oxidase from Lactobacillus brevis DSM 20054), respectively, giving the corresponding (R)-α-hydroxycyclopentanone 3a, (R)-α-hydroxycyclohexanone 3b, and (R)-α-hydroxycycloheptanone 3c in 98-99% ee and 70-50% conversion with TTN of NAD+-recycling of 5500-26000. Cascade catalysis with mixed cells of Escherichia coli (SpEH) and E. coli (BDHA-NOX) converted 100-300 mM meso-epoxides 1a-1c to (R)-α-hydroxy ketones 3a-3c in 98-99% ee and 85-57% conversion. Cells of E. coli (SpEH-BDHA-NOX) coexpressing all three enzymes were also proven as good catalysts for the cascade conversion of 100-200 mM meso-epoxides 1a-1c, giving (R)-α-hydroxy ketones 3a-3c in 98-99% ee and 79-52% conversion. The cascade biocatalysis for one-pot synthesis of α-hydroxy ketone in high ee was also successfully demonstrated with a racemic epoxide (1,2,3,4-tetrahydronaphthalene-1,2-oxide 1d) as the substrate. By using two whole-cells based approaches, (R)-α-hydroxytetralone 3d was obtained in 99% ee and 49-40% conversion from 20 to 5 mM racemic epoxide 1d. Preparative cascade biotransformation of cyclohexene oxide 1b gave (R)-α-hydroxycyclohexanone 3b in 98% ee with 70% isolated yield. The developed new type of cascade biocatalysis is enantioselective, green, and often high yielding. The concept might be generally applicable to produce other useful enantiopure α-hydroxy ketones from the corresponding meso- or racemic epoxides by cascade catalysis using appropriate enzymes. (Chemical Equation Presented).
Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution
Sun, Zhoutong,Lonsdale, Richard,Kong, Xu-Dong,Xu, Jian-He,Zhou, Jiahai,Reetz, Manfred T.
supporting information, p. 12410 - 12415 (2015/10/12)
Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95% library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme.