89-81-6Relevant articles and documents
Synthesis of Cyclic Enones by Allyl-Palladium-Catalyzed α,β-Dehydrogenation
Huang, David,Zhao, Yizhou,Newhouse, Timothy R.
supporting information, p. 684 - 687 (2018/02/09)
The use of allyl-palladium catalysis for the one-step α,β-dehydrogenation of ketones via their zinc enolates is reported. The optimized protocol utilizes commercially available Zn(TMP)2 as base and diethyl allyl phosphate as oxidant. Notably, this transformation operates under salt-free conditions and tolerates a diverse scope of cycloalkanones.
Hydrolytic enantioselective protonation of cyclic dienyl esters and a β-diketone with chiral phase-transfer catalysts
Yamamoto, Eiji,Gokuden, Daichi,Nagai, Ayano,Kamachi, Takashi,Yoshizawa, Kazunari,Hamasaki, Akiyuki,Ishida, Tamao,Tokunaga, Makoto
supporting information, p. 6178 - 6181 (2013/02/25)
Hydrolytic enantioselective protonation of dienyl esters and a β-diketone catalyzed by phase-transfer catalysts are described. The latter reaction is the first example of an enantio-convergent retro-Claisen condensation. Corresponding various optically active α,β-unsaturated ketones having tertiary chiral centers adjacent to carbonyl groups were obtained in good to excellent yields and enantiomeric ratios (83-99%, up to 97.5:2.5 er).
Highly enantio- and s-trans C=C bond selective catalytic hydrogenation of cyclic enones: Alternative synthesis of (-)-menthol
Ohshima, Takashi,Tadaoka, Hiroshi,Hori, Kiyoto,Sayo, Noboru,Mashima, Kazushi
scheme or table, p. 2060 - 2066 (2009/04/07)
A highly enantioselective catalytic hydrogenation of cyclic enones was achieved by using the combination of a cationic Rh1 complex, (S)-5,5′-bis{di(3,5-di-tert-butyl-4-methoxyphenylphosphino)}-4, 4′-bi-1,3-benzodioxole (DTBM-SEGPHOS), and (CH2CH 2PPh3Br)2. The presence of an s-cis C=C bond isopropylidene moiety on the cyclic enone influenced the enantioselectivity of the hydrogenation. Thus, the hydrogenation of 3-alkyl-6-isopropylidene-2- cyclohexen-1-one, which contains both s-cis and s-trans enones, proceeded in excellent enantioselectivity (up to 98% ee). To obtain high enantio- and s-trans selectivities, the addition of a halogen source to the cationic Rh complex was the essential step. With the key step of the s-trans selective asymmetric hydrogenation of piperitenone, we demonstrated a new synthetic method for optically pure (-)-menthol via three atom-economical hydrogenations. Moreover, we found that the complete s-trans and s-cis C=C bond selective reactions were also realized by the proper choice of both the chiral ligands and halides.