78348-28-4Relevant articles and documents
Enhancement of amino acid detection and quantification by electrospray ionization mass spectrometry
Yang, Wen-Chu,Mirzaei, Hamid,Liu, Xiuping,Regnier, Fred E.
, p. 4702 - 4708 (2006)
A new strategy for amino acid analysis is reported involving derivatization with an N-hydroxysuccinimide ester of N-alkylnicotinic acid (C n-NA-NHS) followed by reversed-phase chromatography and electrospray ionization mass spectrometry (RPC-MS). Detection sensitivity increased as the N-alkyl chain length of the nicotinic acid derivatizing agent was increased from 1 to 4. N-Acylation of amino acids with the Cn-NA-NHS reagents in water produced a stable product in roughly 1 min using a 4-fold molar excess of derivatizing agent in 0.1 M sodium borate buffer at pH values ranging from 8.5 to 10. Some O-acylation of tyrosine was also observed, but the product hydrolyzed within a few minutes at pH 10. The cystine product also degraded slowly over the course of a few days from reduction of the disulfide bond to form cysteine. The retention time of Cn-NA derivatized amino acids was lengthened in reversed-phase chromatography to the extent that polar amino acids were retained beyond the solvent peak, particularly in the cases of the C3-NA and C4-NA derivatives. Complete resolution of 18 amino acids was achieved in 28 min using the C4-NA-NHS reagent. Compared to N-acylation with benzoic acid, derivatization with C 4-NA-NHS increased MS detection sensitivity 6-80-fold. This was attributed to the surfactant properties of the Cn-NA-NHS reagents. The quaternary amine increased the charge on amino acid conjugates while the presence of an adjacent alkyl chain further increased ionization efficiency by apparently enhancing amino acid migration to the surface of electrospray droplets. Further modification of the Cn-NA-NHS reagents with deuterium was used to prepare coded sets of derivatizing agents. These coding agents were used to differentially code samples and after mixing carry out comparative concentration measurements between samples using extracted ion chromatograms to estimate relative peak areas of derivatized amino acids.
Structure-activity relationships of N-terminal variants of peptidomimetic tissue transglutaminase inhibitors
Adhikary, Gautam,Cundy, Nicholas J.,Eckert, Richard L.,Eisinga, Sarah,Firoozi, Neda,Gates, Eric W. J.,Keillor, Jeffrey W.,Leccese, Jessica,McNeil, Nicole M. R.,Tyndall, Joel D. A.
, (2022/02/16)
Tissue transglutaminase (TG2) is a multifunctional protein that catalyses protein crosslinking in the extracellular matrix, and functions as an intracellular G-protein. While both activities have been associated with human diseases, its role as a G-protein has been linked to cancer stem cell survival and maintenance of a metastatic phenotype. Recently we have shown that targeted covalent inhibitors (TCIs) can react selectively with the enzyme active site of TG2, to allosterically abolish its ability to bind GTP. In the present work, we focused on the variation of the N-terminal group of these peptidomimetic inhibitors, in order to enhance efficiency, while reducing log P and the number of rotatable bonds. This approach led to the synthesis and evaluation of 41 novel inhibitors, some of which had greatly improved efficiency and affinity for TG2 (e.g. TCI 72: KI = 1.0 μM, kinact/KI = 4.4 × 105 M?1 min?1). Molecular modelling provided a hypothetical binding mode for these TCIs. The most efficient inhibitors were evaluated further and shown to have excellent isozyme selectivity, to block GTP binding, and to have improved pharmacokinetic properties, as expected. Their biological activity was also confirmed, in a cellular invasion assay, although with less potency than expected.
Halide-Accelerated Acyl Fluoride Formation Using Sulfuryl Fluoride
Foth, Paul J.,Malig, Thomas C.,Yu, Hao,Bolduc, Trevor G.,Hein, Jason E.,Sammis, Glenn M.
supporting information, p. 6682 - 6686 (2020/09/02)
Herein, we report a new one-pot sequential method for SO2F2-mediated nucleophilic acyl substitution reactions starting from carboxylic acids. A mechanistic study revealed that SO2F2-mediated acid activation proceeds via the anhydride, which is then converted to the corresponding acyl fluoride. Tetrabutylammonium chloride or bromide accelerate the formation of acyl fluoride. Optimized halide-accelerated conditions were used to synthesize acyl fluorides in 30-80percent yields, and esters, amides, and thioesters in 72-96percent yields without reoptimization for each nucleophile.
Structure-Activity Relationships of Potent, Targeted Covalent Inhibitors That Abolish Both the Transamidation and GTP Binding Activities of Human Tissue Transglutaminase
Akbar, Abdullah,McNeil, Nicole M. R.,Albert, Marie R.,Ta, Viviane,Adhikary, Gautam,Bourgeois, Karine,Eckert, Richard L.,Keillor, Jeffrey W.
, p. 7910 - 7927 (2017/10/06)
Human tissue transglutaminase (hTG2) is a multifunctional enzyme. It is primarily known for its calcium-dependent transamidation activity that leads to formation of an isopeptide bond between glutamine and lysine residues found on the surface of proteins, but it is also a GTP binding protein. Overexpression and unregulated hTG2 activity have been associated with numerous human diseases, including cancer stem cell survival and metastatic phenotype. Herein, we present a series of targeted covalent inhibitors (TCIs) based on our previously reported Cbz-Lys scaffold. From this structure-activity relationship (SAR) study, novel irreversible inhibitors were identified that block the transamidation activity of hTG2 and allosterically abolish its GTP binding ability with a high degree of selectivity and efficiency (kinact/KI > 105 M-1 min-1). One optimized inhibitor (VA4) was also shown to inhibit epidermal cancer stem cell invasion with an EC50 of 3.9 μM, representing a significant improvement over our previously reported "hit" NC9.