780-69-8Relevant articles and documents
Charge Modified Porous Organic Polymer Stabilized Ultrasmall Platinum Nanoparticles for the Catalytic Dehydrogenative Coupling of Silanes with Alcohols
Chen, Chao,Cheng, Dan,Ding, Shunmin,Liang, Sanqi,Liu, Senqun,Ma, Xiaohua,Su, Tongtong,Wu, Shaohua,Zeng, Rong
, (2021/08/12)
Developing an ideal stabilizer to prevent the aggregation of nanoparticles is still a big challenge for the practical application of noble metal nanocatalysts. Herein, we develop a charge (NTf2?) modified porous organic polymer (POP-NTf2) to stabilize ultrasmall platinum nanoparticles. The catalyst is characterized and applied in the catalytic dehydrogenative coupling of silanes with alcohols. The catalyst exhibits excellent catalytic performance with highly dispersed ultrasmall platinum nanoparticles (ca. 2.22?nm). Moreover, the catalyst can be reused at least five times without any performance significant loss and Pt NPs aggregation. Graphic Abstract: [Figure not available: see fulltext.]
Sustainable Catalytic Synthesis of Diethyl Carbonate
Putro, Wahyu S.,Ikeda, Akira,Shigeyasu, Shinji,Hamura, Satoshi,Matsumoto, Seiji,Lee, Vladimir Ya.,Choi, Jun-Chul,Fukaya, Norihisa
, p. 842 - 846 (2020/12/07)
New sustainable approaches should be developed to overcome equilibrium limitation of dialkyl carbonate synthesis from CO2 and alcohols. Using tetraethyl orthosilicate (TEOS) and CO2 with Zr catalysts, we report the first example of sustainable catalytic synthesis of diethyl carbonate (DEC). The disiloxane byproduct can be reverted to TEOS. Under the same conditions, DEC can be synthesized using a wide range of alkoxysilane substrates by investigating the effects of the number of ethoxy substituent in alkoxysilane substrates, alkyl chain, and unsaturated moiety on the fundamental property of this reaction. Mechanistic insights obtained by kinetic studies, labeling experiments, and spectroscopic investigations reveal that DEC is generated via nucleophilic ethoxylation of a CO2-inserted Zr catalyst and catalyst regeneration by TEOS. The unprecedented transformation offers a new approach toward a cleaner route for DEC synthesis using recyclable alkoxysilane.
Dimethylformamide-stabilised palladium nanoclusters catalysed coupling reactions of aryl halides with hydrosilanes/disilanes
Nagata, Tatsuki,Inoue, Takeru,Lin, Xianjin,Ishimoto, Shinya,Nakamichi, Seiya,Oka, Hideo,Kondo, Ryota,Suzuki, Takeyuki,Obora, Yasushi
, p. 17425 - 17431 (2019/06/24)
N,N-Dimethylformamide-stabilised Pd nanocluster (NC) catalysed cross-coupling reactions of hydrosilane/disilane have been investigated. In this reaction, the coupling reaction proceeds without ligands with low catalyst loading. N,N-Dimethylacetamide is a crucial solvent in these reactions. The solvent effect was considered by various techniques, such as transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Pd NCs can be recycled five times under both hydrosilane and disilane reaction conditions.