Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7642-18-4

Post Buying Request

7642-18-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7642-18-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7642-18-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,6,4 and 2 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 7642-18:
(6*7)+(5*6)+(4*4)+(3*2)+(2*1)+(1*8)=104
104 % 10 = 4
So 7642-18-4 is a valid CAS Registry Number.

7642-18-4Relevant articles and documents

Electro-mediated PhotoRedox Catalysis for Selective C(sp3)–O Cleavages of Phosphinated Alcohols to Carbanions

Barham, Joshua P.,K?nig, Burkhard,Karl, Tobias A.,Reiter, Sebastian,Tian, Xianhai,Yakubov, Shahboz,de Vivie-Riedle, Regina

supporting information, p. 20817 - 20825 (2021/08/18)

We report a novel example of electro-mediated photoredox catalysis (e-PRC) in the reductive cleavage of C(sp3)?O bonds of phosphinated alcohols to alkyl carbanions. As well as deoxygenations, olefinations are reported which are E-selective and can be made Z-selective in a tandem reduction/photosensitization process where both steps are photoelectrochemically promoted. Spectroscopy, computation, and catalyst structural variations reveal that our new naphthalene monoimide-type catalyst allows for an intimate dispersive precomplexation of its radical anion form with the phosphinate substrate, facilitating a reactivity-determining C(sp3)?O cleavage. Surprisingly and in contrast to previously reported photoexcited radical anion chemistries, our conditions tolerate aryl chlorides/bromides and do not give rise to Birch-type reductions.

Heterogeneous Isomerization for Stereoselective Alkyne Hydrogenation to trans-Alkene Mediated by Frustrated Hydrogen Atoms

Zhang, Weijie,Qin, Ruixuan,Fu, Gang,Zheng, Nanfeng

supporting information, p. 15882 - 15890 (2021/10/02)

Stereoselective production of alkenes from the alkyne hydrogenation plays a crucial role in the chemical industry. However, for heterogeneous metal catalysts, the olefins in cis-configuration are usually dominant in the products due to the most important and common Horiuti-Polanyi mechanism involved over the metal surface. In this work, through combined theoretical and experimental investigations, we demonstrate a novel isomerization mechanism mediated by the frustrated hydrogen atoms via the H2 dissociation at the defect on solid surface, which can lead to the switch in selectivity from the cis-configuration to trans-configuration without overhydrogenation. The defective Rh2S3 with exposing facet of (110) exhibits outstanding performance as a heterogeneous metal catalyst for stereoselective production of trans-olefins. With the frustrated hydrogen atoms at spatially separated high-valence Rh sites, the isolated hydrogen mediated cis-to-trans isomerization of olefins can be effectively conducted and the overhydrogenation can be completely inhibited. Furthermore, the bifunctional Rh-S/Pd nanosheets have been synthesized through the surface modification of Pd nanosheets with rhodium and sulfide. With the selective semihydrogenation of alkynes into cis-olefins catalyzed by the small surface PdSx ensembles, the bifunctional Rh-S/Pd nanosheets exhibit excellent activity and stereoselectivity in the one-pot alkyne hydrogenation into trans-olefin, which surpasses the most reported homogeneous and heterogeneous catalysts.

Acceptorless dehydrogenative construction of CN and CC bonds through catalytic aza-Wittig and Wittig reactions in the presence of an air-stable ruthenium pincer complex

Biswas, Nandita,Das, Kalicharan,Sardar, Bitan,Srimani, DIpankar

, p. 6501 - 6512 (2019/05/24)

The construction of CN bonds was achieved by the dehydrogenative coupling of alcohol and azide via aza-Wittig type reaction. The reaction is catalyzed by an acridine-derived ruthenium pincer complex and does not use any oxidant. The present protocol offers a wide substrate scope, including aliphatic, aryl or heteroaryl alcohol/azides. This expeditious protocol was successfully applied to construct a CC bond directly from alcohol via dehydrogenative Wittig reaction. Furthermore, the synthesis of structurally important pyrrolo[1,4]benzodiazepine derivatives was also achieved by this methodology.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7642-18-4