76272-34-9Relevant articles and documents
Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity
Huang, Boshi,Wang, Huiqun,Zheng, Yi,Li, Mengchu,Kang, Guifeng,Barreto-De-Souza, Victor,Nassehi, Nima,Knapp, Pamela E.,Selley, Dana E.,Hauser, Kurt F.,Zhang, Yan
, p. 7702 - 7723 (2021/06/28)
Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.
Asymmetric Mannich Reaction and Construction of Axially Chiral Sulfone-Containing Styrenes in One Pot from α-Amido Sulfones Based on the Waste-Reuse Strategy
Li, Dongmei,Tan, Yu,Peng, Lei,Li, Shan,Zhang, Nan,Liu, Yidong,Yan, Hailong
supporting information, p. 4959 - 4963 (2018/08/24)
A simultaneous asymmetric Mannich reaction and the construction of axially chiral sulfone-containing styrenes in one pot from α-amido sulfones based on the waste-reuse strategy was demonstrated. A series of chiral β-amino diesters and axially chiral sulfone-containing styrenes with various functional groups were synthesized in good to excellent yields and enantioselectivities under mild conditions. In addition, this protocol has been successfully applied to synthesize the anti-HIV drug Maraviroc and chiral trichloro derivatives.
Synthesis and biological investigations of 3β-aminotropane arylamide derivatives with atypical antipsychotic profile
Stefanowicz, Jacek,S?owiński, Tomasz,Wróbel, Martyna Z.,?lifirski, Grzegorz,Dawidowski, Maciej,Stefanowicz, Zdzis?awa,Jastrz?bska-Wi?sek, Magdalena,Partyka, Anna,Weso?owska, Anna,Tur?o, Jadwiga
, p. 1906 - 1928 (2018/06/26)
This work is a continuation of our previous research, concentrating this time on lead structure modification to increase the 5-HT1A receptor affinity and water solubility of designed compounds. Therefore, the compounds synthesised within the present project included structural analogues of 3β-acylamine derivatives of tropane with the introduction of a methyl substituent in the benzyl ring and a 2-quinoline, 3-quinoline, or 6-quinoline moiety. A series of novel 3β-aminotropane derivatives was evaluated for their affinity for 5-HT1A, 5-HT2A, and D2 receptors, which allowed for the identification of compounds 12e, 12i, and 19a as ligands with highest affinity for the tested receptors; they were then subjected to further evaluation in preliminary in vivo studies. Selected compounds 12i and 19a displayed antipsychotic properties in the d-amphetamine-induced and MK-801-induced hyperlocomotor activity test in mice. Moreover, compound 19a showed significant antidepressant-like activity in the forced swim test in mice.