Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7417-81-4

Post Buying Request

7417-81-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7417-81-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7417-81-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,1 and 7 respectively; the second part has 2 digits, 8 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 7417-81:
(6*7)+(5*4)+(4*1)+(3*7)+(2*8)+(1*1)=104
104 % 10 = 4
So 7417-81-4 is a valid CAS Registry Number.

7417-81-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name [(S)-phenylsulfinyl]methylbenzene

1.2 Other means of identification

Product number -
Other names benzyl-phenyl-sulfoxide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7417-81-4 SDS

7417-81-4Relevant articles and documents

Chiral Ligands in Hypervalent Iodine Compounds: Synthesis and Structures of Binaphthyl-Based λ3-Iodanes

Zhang, Huaiyuan,Cormanich, Rodrigo A.,Wirth, Thomas

supporting information, (2021/12/22)

Several novel binaphthyl-based chiral hypervalent iodine(III) reagents have been prepared and structurally analysed. Various asymmetric oxidative reactions were applied to evaluate the reactivities and stereoselectivities of those reagents. Moderate to excellent yields were observed; however, very low stereoselectivities were obtained. NMR experiments indicated that these reagents are very easily hydrolysed in either chloroform or DMSO solvents leading to the limited stereoselectivities. It is concluded that the use of chiral ligands is an unsuccessful way to prepare efficient stereoselective iodine(III) reagents.

New oxovanadium and dioxomolybdenum complexes as catalysts for sulfoxidation: experimental and theoretical investigations of E and Z isomers of ONO tridentate Schiff base ligand

Behjatmanesh-Ardakani, Reza,Fallah-Mehrjardi, Mehdi,Kargar, Hadi,Moghimi, Atefeh,Munawar, Khurram Shahzad,Rudbari, Hadi Amiri

, (2021/06/23)

A new ONO-tridentate Schiff base ligand (H2L) derived by the condensation of nicotinic hydrazide with 5-chlorosalicylaldehyde has been prepared and characterized by combustion analysis (CHN), FT-IR and multinuclear (1H and 13C) NMR spectroscopy. The crystalline nature and molecular structure of the ligand were confirmed by single-crystal X-ray diffraction analysis. Furthermore, the optimized structural parameters of the four possible configurations of the ligand including Z and E stereoisomers each containing two tautomeric forms (enol and keto) have also been investigated. The theoretical parameters were calculated by performing the DFT method using the B3LYP/Def2-TZVP level of theory. In addition to this, dioxomolybdenum(VI) (MoO2L) and oxovanadium(V) (VOL) complexes with the entitled Schiff base ligand have also been prepared and characterized by different techniques. Then, the catalytic efficiencies of synthesized VOL and MoO2L complexes were also explored for the oxidation of sulfides using 30% aqueous H2O2 as a source of oxygen. These homogeneous catalysts showed excellent catalytic activities in the oxidation of both aromatic and aliphatic sulfides.

Deep eutectic solvent-assisted synthesis of highly efficient nanocatalyst (n-TiO2@TDI@DES (ZnCl2:urea)) for chemoselective oxidation of sulfides to sulfoxides

Taghavi, Shaghayegh,Amoozadeh, Ali,Nemati, Firouzeh

, (2020/12/21)

This study proposed a straightforward process to synthesize 2,4-toluene diisocyanate (TDI)-functionalized TiO2 nanoparticles in which a cost-effective linker (TDI) with high reactivity was employed to couple nano-TiO2 through covalent bonding to a deep eutectic solvent (DES). By this method, DES was successfully immobilized on the TiO2@TDI surface as an adsorbent and stabilizer. The structural, morphological, and physicochemical characteristics of the synthesized nanocatalysts were evaluated using various analytical methods including Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM–EDX), and elemental analysis. The heterogeneity of the catalyst was also examined by a hot filtration test. The obtained TiO2@TDI@DES nanoparticles offered superior catalytic behavior and excellent yield as well as recyclability for the chemoselective oxidation of sulfide into sulfoxide using a green oxidant (hydrogen peroxide). This catalyst exhibited excellent reusability as it can be recovered for six successive cycles with no significant leach or reduction of catalytic efficiency.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7417-81-4