673-41-6Relevant articles and documents
Matsuda-Heck arylation of itaconates: A versatile approach to heterocycles from a renewable resource
Krause, Andreas,Sperlich, Eric,Schmidt, Bernd
supporting information, p. 4292 - 4302 (2021/05/31)
Itaconic acid esters and hemiesters undergo Pd-catalyzed coupling reactions with arene diazonium salts in high to excellent yields. The coupling products of ortho-nitro arene diazonium salts can be converted in one or two steps to benzazepine-2-ones.
Metal-Free Visible-Light Synthesis of Arylsulfonyl Fluorides: Scope and Mechanism
Chelagha, Aida,Khrouz, Lhoussain,Louvel, Dan,Monnereau, Cyrille,Payard, Pierre-Adrien,Rouillon, Jean,Tlili, Anis
supporting information, p. 8704 - 8708 (2021/05/17)
The first metal-free procedure for the synthesis of arylsulfonyl fluorides is reported. Under organo-photoredox conditions, aryl diazonium salts react with a readily available SO2 source (DABSO) to afford the desired product through simple nucleophilic fluorination. The reaction tolerates the presence of both electron-rich and -poor aryls and demonstrated a broad functional group tolerance. To shed the light on the reaction mechanism, several experimental techniques were combined, including fluorescence, NMR, and EPR spectroscopy as well as DFT calculations.
σ-Bond initiated generation of aryl radicals from aryl diazonium salts
Chan, Bun,McErlean, Christopher S. P.,Nashar, Philippe E.,Tatunashvili, Elene
supporting information, p. 1812 - 1819 (2020/03/17)
σ-Bond nucleophiles and molecular oxygen transform aryl diazonium salts into aryl radicals. Experimental and computational studies show that Hantzsch esters transfer hydride to aryl diazonium species, and that oxygen initiates radical fragmentation of the diazene intermediate to produce aryl radicals. The operational simplicity of this addition-fragmentation process for the generation of aryl radicals, by a polar-radical crossover mechanism, has been illustrated in a variety of bond-forming reactions.