654-70-6Relevant articles and documents
High Turnover Pd/C Catalyst for Nitro Group Reductions in Water. One-Pot Sequences and Syntheses of Pharmaceutical Intermediates
Gallou, Fabrice,Li, Xiaohan,Lipshutz, Bruce H.,Takale, Balaram S.,Thakore, Ruchita R.
supporting information, p. 8114 - 8118 (2021/10/25)
Commercially available Pd/C can be used as a catalyst for nitro group reductions with only 0.4 mol % Pd loading. The reaction can be performed using either silane as a transfer hydrogenating agent or simply a hydrogen balloon (μ1 atm pressure). With this technology, a series of nitro compounds was reduced to the desired amines in high chemical yields. Both the catalyst and surfactant were recycled several times without loss of reactivity.
Preparation method of 4-amino-2-trifluoromethyl benzonitrile
-
Paragraph 0036; 0044-0046; 0047; 0053-0054, (2020/05/14)
The invention relates to the technical field of chemical engineering, in particular to a preparation method of 4-amino-2-trifluoromethyl benzonitrile, which comprises the following steps: after 2-bromo-5-fluorobenzotrifluoride is subjected to a Grignard reaction, feeding carbon dioxide, and hydrolyzing to obtain 4-fluoro-2-trifluoromethyl benzoic acid; adding the 4-fluoro-2-trifluoromethyl benzoicacid into a pressure kettle, feeding liquid ammonia, and reacting under the action of a catalyst to generate 4-amino-2-trifluoromethyl benzamide; heating and dehydrating the 4-amino-2-trifluoromethylbenzamide with a dehydrating agent to generate the 4-amino-2-trifluoromethyl benzonitrile. According to the preparation method, highly toxic cuprous cyanide is not adopted, so that the safety risk ofproduction is reduced, and three wastes do not contain cyanide ions or a large amount of copper ions, are easier to treat and have small harm to the environment.
Catalytic Cyanation Using CO2 and NH3
Wang, Hua,Dong, Yanan,Zheng, Chaonan,Sandoval, Christian A.,Wang, Xue,Makha, Mohamed,Li, Yuehui
supporting information, p. 2883 - 2893 (2019/01/05)
Li and co-workers describe the catalytic cyanation of organic halides with CO2 and NH3. In the presence of Cu2O/DABCO as the catalyst, a variety of aromatic bromides and iodides were transformed to the desired nitrile products with broad functional-group tolerance. Both 13C- and/or 15N-labeled nitriles were obtained conveniently with appropriately isotope-labeled CO2 and NH3. Construction of functionalized chemical compounds from small molecules in a highly selective and efficient manner is crucial for sustainable development. The chemical-based manufacturing sector of the future should aim to produce chemicals from very simple and abundant resources, just as nature uses CO2 and N2 to generate sugars, amino acids, and so forth. In practice, however, the utilization of CO2 for the generation of industrial products, such as drugs and related intermediates, still remains a major challenge. Here, we describe the facile cyanide-free production of high-value nitriles with CO2 and NH3 as the sole sources of carbon and nitrogen, respectively. This practical and catalytic methodology provides a unique strategy for the utilization of small molecules for sustainable and cost-effective applications. Selective cyanation of aryl halides was achieved with CO2 and NH3 as the only sources of carbon and nitrogen, respectively. In the presence of Cu catalysts under low pressure (3 atm), a variety of aromatic iodides and bromides were transformed to the desired nitrile products without the use of toxic metal cyanides. Notably, olefins, esters, amides, alcohols, and amino groups were tolerated. Mechanistic studies suggest that Cu(III)-aryl insertion by isocyanate intermediates is involved. [13C,15N]-labeled nitriles were conveniently accessible from the respective isotope-labeled CO2 and NH3 via this methodology.