6337-24-2Relevant articles and documents
Thermally stable and robust gadolinium-based metal-organic framework: Synthesis, structure and heterogeneous catalytic O-arylation reaction
Ghosh, Pameli,Maity, Tanmoy,Biswas, Saptarshi,Debnath, Rakesh,Koner, Subratanath
, (2020/12/21)
Hydrothermal treatment of gadolinium nitrate and 2,6-naphthalenedicarboxylic acid (H2NDC) afforded a new metal-organic framework compound, {[Gd4(NDC)6(H2O)6]·2H2O}n(1). Compound 1 has been characterized by single-crystal X-ray crystallography, elemental analysis, FT-IR spectroscopy, therrmogravimetric analysis (TGA) and powder X-ray diffraction analysis. It is crystallized in the monoclinic system with the P21/n space group. Four crystallographically distinct Gd (III) centres are interconnected with each other through bridged carboxylato oxygen atoms and water molecules to form tetranuclear secondary building units, which are further connected through the carboxylato ligand and the network propagates along the crystallographic ac plane to form a 2D structure. Subsequent reinforcement from the remaining carboxylato oxygen atoms gives rise to a robust 3D framework structure. Thermogravimetric analysis demonstrates that compound 1 is fairly stable after dehydration under a nitrogen atmosphere. Notably, compound 1 is capable of catalyzing the O-arylation reaction efficiently between substituted phenols and bromoarene under heterogeneous conditions at 80 °C to afford unsymmetrical diarylethers.
A new strategy to design a graphene oxide supported palladium complex as a new heterogeneous nanocatalyst and application in carbon–carbon and carbon-heteroatom cross-coupling reactions
Bahrami, Kiumars,Targhan, Homa
, (2019/04/01)
The palladium nanoparticles were successfully stabilized with an average diameter of 6–7?nm through the coordination of palladium and terpyridine-based ligands grafted on graphene oxide surface. The graphene oxide supported palladium nanoparticles were thoroughly characterized and applied as an efficient heterogeneous catalyst in carbon–carbon (Suzuki-Miyaura, Mizoroki-Heck coupling reactions) and carbon–heteroatom (C-N and C-O) bond-forming reactions. The catalyst was simply recycled from the reaction mixture and was reused consecutive four times with small drop in catalytic activity.
Design of BNPs-TAPC Palladium Complex as a Reusable Heterogeneous Nanocatalyst for the O-Arylation of Phenols and N-Arylation of Amines
Bahrami, Kiumars,Khodamorady, Minoo
, p. 688 - 698 (2019/01/04)
The thermally stable new heterogenous nanocatalyst BNPs@SiO2(CH2)3-TAPC-O-CH2CH2NH2-Pd(0) was synthesized, characterized and successfully applied in carbon-heteroatom (C–O and C–N) coupling reactions of aryl halides with phenols and amines. The formation of resultant nanocatalyst was approved by FT-IR, XRD, TGA, XPS and EDX techniques. The morphology of BNPs@SiO2(CH2)3-TAPC-O-CH2CH2NH2-Pd(0) was characterized using scanning and transmission electron microscopes. The leaching of palladium from the surface of the catalyst was studid by ICP-OES technique. Noteworthy, the highly active BNPs@SiO2(CH2)3-TAPC-O-CH2CH2NH2-Pd(0) can be easily recycled and reused for six times with negligible loss in its activity. Some remarkable advantages of this method are the shorter reaction times, milder conditions, no needs for an inert atmosphere, high yields and easy separation. Graphical Abstract: [Figure not available: see fulltext.].