626-01-7Relevant articles and documents
Nickel–Ruthenium Bimetallic Species on Hydrotalcite Support: A Potential Hydrogenation Catalyst
Ahammed, Shabas,Ganesh, V.,Ramachandran, Arya,Sakthivel, A.,Sreenavya, A.
, (2021)
Nickel–ruthenium loaded on magnesium–aluminium hydrotalcite materials were prepared by a post-synthetic method. The textural and physicochemical properties of the materials were systematically characterised by Fourier transform infra-red (FT–IR), powder X-ray diffraction (XRD), scanning electron microscope (SEM), nitrogen sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The uniform distribution of bimetallic Ni-Ru on hydrotalcite support was evident from the powder XRD and HRTEM analysis of the used catalysts. The hydrogen temperature-programmed reduction profile reveals strong adsorption of hydrogen on the surface of the catalysts. The resultant materials show promising catalytic activity for nitrobenzene reduction under ambient reaction conditions. The formation of metallic nickel and ruthenium on the surface of hydrotalcite under the reaction conditions was evident through powder XRD analysis of the sample obtained under reaction condition. The reaction showed first order kinetics with respect to nitrobenzene. Furthermore, the catalytic activity remained intact for several cycles, and the catalysts also showed promising activity for the reduction of several substituted nitroarene molecules. Graphical Abstract: [Figure not available: see fulltext.].
Microwave-assisted reduction of aromatic nitro compounds with novel oxo-rhenium complexes
Blacque, Olivier,Grieco, Gabriele
, (2021/09/16)
The reduction of several aromatic nitro compounds to amines by means of the two novel catalytic systems ([IMes]2ReOBr3)/PhSiH3 and ([Py]3ReNOBr2)/PhSiH3 under microwave irradiation is here reported. These two systems were able to perform the reduction of nitro groups with higher TON and TOF when compared with previously reported systems based on oxo-rhenium core under standard heating, although they showed a lesser broad reaction scope compared with the known systems.
NaI/PPh3-Mediated Photochemical Reduction and Amination of Nitroarenes
Qu, Zhonghua,Chen, Xing,Zhong, Shuai,Deng, Guo-Jun,Huang, Huawen
supporting information, p. 5349 - 5353 (2021/07/21)
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.