6065-63-0Relevant articles and documents
Rethinking Basic Concepts-Hydrogenation of Alkenes Catalyzed by Bench-Stable Alkyl Mn(I) Complexes
Weber, Stefan,St?ger, Berthold,Veiros, Luis F.,Kirchner, Karl
, p. 9715 - 9720 (2019/10/14)
An efficient additive-free manganese-catalyzed hydrogenation of alkenes to alkanes with molecular hydrogen is described. This reaction is atom economic, implementing an inexpensive, earth-abundant nonprecious metal catalyst. The most efficient precatalyst is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate which undergoes rapid hydrogenolysis to form the active 16e Mn(I) hydride catalyst [Mn(dippe)(CO)2(H)]. A range of mono- A nd disubstituted alkenes were efficiently converted into alkanes in good to excellent yields. The hydrogenation of 1-alkenes and 1,1-disubstituted alkenes proceeds at 25 °C, while 1,2-disubstituted alkenes require a reaction temperature of 60 °C. In all cases, a catalyst loading of 2 mol % and a hydrogen pressure of 50 bar were applied. A mechanism based on DFT calculations is presented, which is supported by preliminary experimental studies.
STABILIZATION OF ACTIVE METAL CATALYSTS AT METAL-ORGANIC FRAMEWORK NODES FOR HIGHLY EFFICIENT ORGANIC TRANSFORMATIONS
-
Paragraph 0322-0323; 0338, (2019/01/07)
Metal-organic framework (MOFs) compositions based on post?synthetic metalation of secondary building unit (SBU) terminal or bridging OH or OH2 groups with metal precursors or other post-synthetic manipulations are described. The MOFs provide a versatile family of recyclable and reusable single-site solid catalysts for catalyzing a variety of asymmetric organic transformations, including the regioselective boryiation and siiylation of benzyiic C—H bonds, the hydrogenation of aikenes, imines, carbonyls, nitroarenes, and heterocycles, hydroboration, hydrophosphination, and cyclization reactions. The solid catalysts can also be integrated into a flow reactor or a supercritical fluid reactor.
Visible-light-induced photocatalytic reductive transformations of organohalides
Kim, Hyejin,Lee, Chulbom
, p. 12303 - 12306 (2013/02/23)
A photo opportunity: A visible-light-excited iridium catalyst delivers electrons from an amine to an organohalide. The electron transfer then induces reductive scission of the carbon-halogen bond, generating the corresponding alkyl, alkenyl, and aryl radical that can undergo cyclization and hydrodehalogenation reactions. Copyright