590-66-9Relevant articles and documents
Pines,Shaw
, p. 1474 (1957)
Reduction of α,β-unsaturated carbonyl compounds and 1,3-diketones in aqueous media, using a raney ni-al alloy
Simion, Cristian,Mitoma, Yoshiharu,Katayama, Yumi,Simion, Alina Marieta
, p. 51 - 55 (2021/02/03)
The treatment of α,β-unsaturated carbonyl compounds and 1,3-diketones with Raney Ni-Al alloy in aqueous media yielded as major reaction products the corresponding saturated alcohols and/or the corresponding hydrocarbons, in a complete transformation of the starting material.
Photocatalytic degradation of benzothiophene by a novel photocatalyst, removal of decomposition fragments by MCM-41 sorbent
Hosseini, Asma,Faghihian, Hossein
, p. 2383 - 2401 (2019/01/29)
In this study, a catalyst was synthesized by introduction of ZnO onto the surface of FSM-16 catalyst support (ZnO/FSM-16). Impregnation of catalyst support by ZnO proceeded through reacting of FSM-16 nanoparticles with Zn(CH3COO)2 solution followed by calcination of the product. The synthesized photocatalyst was then identified by different methods, and the optical property of the photocatalyst was studied by the DRS method. The results showed that after deposition of photocatalyst on FSM-16 support, the photocatalyst band gap was shifted to the visible region. The photoluminescence studies revealed lower recombination of electron–holes of the photocatalyst after immobilization on FSM-16. The influence of different variables on the photocatalytic performance of the samples was studied. Under optimized conditions, the high degradation efficiency of 97% was obtained by ZnO/FSM-16. The compounds produced from degradation of benzothiophene were recognized by the GC–MS method, and the products containing sulfur were properly adsorbed by MCM-41 sorbent. The photocatalyst showed high regeneration capability, and its activity was mostly preserved after six regeneration cycles.
The reaction of biphenyl radical anion and dianion with alkyl fluorides. From ET to SN2 reaction pathways and synthetic applications
Pérez, Henoc,Melero, Cristóbal,Guijarro, Albert,Yus, Miguel
experimental part, p. 10769 - 10783 (2010/02/28)
The reaction of dilithium biphenyl (Li2C12H10) with alkyl fluorides has been studied from the point of view of the distribution of products. Two main reaction pathways, the nucleophilic substitution (SN2) and the electron transfer (ET), can compete to yield the same alkylation products in what is known as the SN2-ET dichotomy. SN2 seems to be the main mechanism operating with primary alkyl fluorides (n-RF). Alkylation proceeds in good yields, and the resulting alkylated dihydrobiphenyl anion (n-RC12H10Li) can be trapped with a second conventional electrophile (E+) affording synthetically interesting dearomatized biphenyl derivatives (n-RC12H10E). The reaction gives a higher amount of ET products as we move to secondary (s-RF) and to tertiary alkyl fluorides (t-RF), in which case the mechanism seems to be dominated by ET. In this case, alkylation by radical coupling is still feasible, giving access to the synthesis of t-RC12H10E, although in lower yields. A rational interpretation of this SN2-ET dichotomy is given on the basis of the full distribution of products observed when 5-hexenyl fluoride and 1,1-dimethyl-5-hexenyl fluoride were are used as radical probes in their reaction with Li2C12H10 and LiC12H10.