56613-81-1Relevant articles and documents
Two enantiocomplementary ephedrine dehydrogenases from arthrobacter sp. TS-15 with broad substrate specificity
Shanati, Tarek,Lockie, Cameron,Beloti, Lilian,Grogan, Gideon,Ansorge-Schumacher, Marion B.
, p. 6202 - 6211 (2019/08/15)
The recently identified pseudoephedrine and ephedrine dehydrogenases (PseDH and EDH, respectively) from Arthrobacter sp. TS-15 are NADH-dependent members of the oxidoreductase superfamily of short-chain dehydrogenases/reductases (SDRs). They are specific for the enantioselective oxidation of (+)-(S) N-(pseudo)ephedrine and (-)-(R) N-(pseudo)ephedrine, respectively. Anti-Prelog stereospecific PseDH and Prelog-specific EDH catalyze the regio- A nd enantiospecific reduction of 1-phenyl-1,2-propanedione to (S)-phenylacetylcarbinol and (R)-phenylacetylcarbinol with full conversion and enantiomeric excess of >99%. Moreover, they perform the reduction of a wide range of aryl-aliphatic carbonyl compounds, including ketoamines, ketoesters, and haloketones, to the corresponding enantiopure alcohols. The highest stability of PseDH and EDH was determined to be at a pH range of 6.0-8.0 and 7.5-8.5, respectively. PseDH was more stable than EDH at 25 °C with half-lives of 279 and 38 h, respectively. However, EDH is more stable at 40 °C with a 2-fold greater half-life than at 25 °C. The crystal structure of the PseDH-NAD+ complex, refined to a resolution of 1.83 ?, revealed a tetrameric structure, which was confirmed by solution studies. A model of the active site in complex with NAD+ and 1-phenyl-1,2-propanedione suggested key roles for S143 and W152 in recognition of the substrate and positioning for the reduction reaction. The wide substrate spectrum of these dehydrogenases, combined with their regio- A nd enantioselectivity, suggests a high potential for the industrial production of valuable chiral compounds.
Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein
Cho, Inha,Prier, Christopher K.,Jia, Zhi-Jun,Zhang, Ruijie K.,G?rbe, Tamás,Arnold, Frances H.
supporting information, p. 3138 - 3142 (2019/02/01)
Chiral 1,2-amino alcohols are widely represented in biologically active compounds from neurotransmitters to antivirals. While many synthetic methods have been developed for accessing amino alcohols, the direct aminohydroxylation of alkenes to unprotected, enantioenriched amino alcohols remains a challenge. Using directed evolution, we have engineered a hemoprotein biocatalyst based on a thermostable cytochrome c that directly transforms alkenes to amino alcohols with high enantioselectivity (up to 2500 TTN and 90 % ee) under anaerobic conditions with O-pivaloylhydroxylamine as an aminating reagent. The reaction is proposed to proceed via a reactive iron-nitrogen species generated in the enzyme active site, enabling tuning of the catalyst's activity and selectivity by protein engineering.
Highly efficient enantioselective liquid-liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts
Pinxterhuis, Erik B.,Gualtierotti, Jean-Baptiste,Heeres, Hero J.,De Vries, Johannes G.,Feringa, Ben L.
, p. 6409 - 6418 (2017/08/29)
Access to enantiopure compounds on large scale in an environmentally friendly and cost-efficient manner remains one of the greatest challenges in chemistry. Resolution of racemates using enantioselective liquid-liquid extraction has great potential to meet that challenge. However, a relatively feeble understanding of the chemical principles and physical properties behind this technique has hampered the development of hosts possessing sufficient resolving power for their application to large scale processes. Herein we present, employing the previously untested SPINOL based phosphoric acids host family, an in depths study of the parameters affecting the efficiency of the resolution of amino-alcohols in the optic of further understanding the core principles behind ELLE. We have systematically investigated the dependencies of the enantioselection by parameters such as the choice of solvent, the temperature, as well as the pH and bring to light many previously unsuspected and highly intriguing interactions. Furthermore, utilizing these new insights to our advantage, we developed novel, highly efficient, extraction and resolving protocols which provide remarkable levels of enantioselectivity. It was shown that the extraction is catalytic in host by demonstrating transport in a U-tube and finally it was demonstrated how the solvent dependency could be exploited in an unprecedented triphasic resolution system.
Norepinephrine alkaloids as antiplasmodial agents: Synthesis of syncarpamide and insight into the structure-activity relationships of its analogues as antiplasmodial agents
Aratikatla, Eswar K.,Valkute, Tushar R.,Puri, Sunil K.,Srivastava, Kumkum,Bhattacharya, Asish K.
, p. 1089 - 1105 (2017/08/03)
Syncarpamide 1, a norepinephrine alkaloid isolated from the leaves of Zanthoxylum syncarpum (Rutaceae) exhibited promising antiplasmodial activities against Plasmodium falciparum with reported IC50 values of 2.04 μM (D6 clone), 3.06 μM (W2 clone) and observed by us 3.90 μM (3D7 clone) and 2.56 μM (K1 clone). In continuation of our work on naturally occurring antimalarial compounds, synthesis of syncarpamide 1 and its enantiomer, (R)-2 using Sharpless asymmetric dihydroxylation as a key step has been accomplished. In order to study structure-activity-relationship (SAR) in detail, a library of 55 compounds (3–57), which are analogues/homologues of syncarpamide 1 were synthesized by varying the substituents on the aromatic ring, by changing the stereocentre at the C-7 and/or by varying the acid groups in the ester and/or amide side chain based on the natural product lead molecule and further assayed in vitro against 3D7 and K1 strains of P. falciparum to evaluate their antiplasmodial activities. In order to study the effect of position of functional groups on antiplasmodial activity profile, a regioisomer (S)-58 of syncarpamide 1 was synthesized however, it turned out to be inactive against both the strains. Two compounds, (S)-41 and its enantiomer, (R)-42 having 3,4,5-trimethoxy cinnamoyl groups as side chains showed better antiplasmodial activity with IC50 values of 3.16, 2.28 μM (3D7) and 1.78, 2.07 μM (K1), respectively than the natural product, syncarpamide 1. Three compounds (S)-13, (S)-17, (S)-21 exhibited antiplasmodial activities with IC50 values of 6.39, 6.82, 6.41 μM against 3D7 strain, 4.27, 7.26, 2.71 μM against K1 strain and with CC50 values of 147.72, 153.0, >200 μM respectively. The in vitro antiplasmodial activity data of synthesized library suggests that the electron density and possibility of resonance in both the ester and amide side chains increases the antiplasmodial activity as compared to the parent natural product 1. The natural product syncarpamide 1 and four analogues/homologues out of the synthesized library of 55, (S)-41, (R)-42, (S)-55 and (S)-57 were assayed in vivo assay against chloroquine-resistant P. yoelii (N-67) strain of Plasmodium. However, none of the five molecules, 1, (S)-41, (R)-42, (S)-55 and (S)-57 exhibited any promising in vivo antimalarial activity against P. yoelii (N-67) strain. Compounds 4, 6, 7 and 11 showed high cytotoxicities with CC50 values of 5.87, 5.08, 6.44 and 14.04 μM, respectively. Compound 6 was found to be the most cytotoxic as compared to the standard drug, podophyllotoxin whereas compounds 4 and 7 showed comparable cytotoxicities to podophyllotoxin.
ANTI-MALARIAL COMPOUNDS AND PROCESS FOR PREPARATION THEREOF
-
, (2016/05/24)
The present invention discloses anti-malarial compound of formula (I) Formula (I) wherein, X is selected from O or NH; R1, R2, R3, R4 and R5 is selected from H or OMe or CH3, -CH2-O-CH2- or -CH=CH-CH=CH-; Y is selected from O or NH and R6, R7 is selected from the following compounds: or pharmaceutically acceptable salts thereof, process for preparation and a pharmaceutical composition containing the same.
Heterogenization of chiral mono oxazoline ligands by grafting onto mesoporous silica MCM-41 and their application in copper-catalyzed asymmetric allylic oxidation of cyclic olefins
Samadi, Saadi,Jadidi, Khosrow,Khanmohammadi, Behnam,Tavakoli, Niloofar
, p. 344 - 353 (2016/07/06)
A series of chiral 4-oxazolinylaniline ligands 8 were conveniently synthesized on a gram scale from inexpensive and commercially available 4-aminobenzoic acid in four steps. The obtained organic chiral ligands have been covalently grafted onto ordered mesoporous silicas MCM-41 and the resulting inorganic–organic hybrid materials have been characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA), powder X-ray diffraction, BET and BJH nitrogen adsorption–desorption methods, energy-dispersive X-ray spectroscopy (EDX), CHN analysis, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). The catalytic and induced asymmetric effects of the chiral copper (I) complexes of these new chiral supported heterogeneous catalysts on the asymmetric allylic oxidation of cycloolefins were investigated under different conditions. Reactions using the catalyst exhibited moderate to good enantioselectivities, up to 80%, and good yields, up to 95% better than the corresponding homogeneous reaction. The catalyst could be recovered easily and reused five times without remarkable loss of reactivity, yield, or enantioselectivity. This is, to the best of our knowledge, the first heterogenization of chiral 4-oxazolinylaniline ligands on an inorganic (silica) surface and their application as a heterogeneous catalyst in the asymmetric Kharash–Sosnovsky reaction.
BETA-ARRESTIN-BIASED CANNABINOID CB1 RECEPTOR AGONISTS AND METHODS FOR MAKING AND USING THEM
HURST Dow P.,REGGIO Patricia H.,SHORE Derek M.
Paragraph 0116, (2016/04/26)
The present invention provides compounds having a CB1 receptor-binding moiety and a directing moiety. In related aspects, the invention provides pharmaceutical compositions containing compounds of the invention, methods for inhibiting a pathway modulated in part by the CB1 receptor activity, and methods for treating a condition or disorder mediated in part by CB1 receptor activity. In certain embodiments, the compounds are compounds of Formula (I). Methods of preparing compounds of Formula (I) are also described. In another aspect, the invention provides methods of identifying a selective agonist of the beta-arrestin pathway over the G-protein pathway.
Use of copper(II)/diamine catalysts in the desymmetrisation of?meso-diols and asymmetric Henry reactions: comparison of?(?)-sparteine and (+)-sparteine surrogates
Canipa, Steven J.,Stute, Annika,O'Brien, Peter
, p. 7395 - 7403 (2017/09/12)
Four new copper(II)/diamine complexes comprising some (+)-sparteine surrogates and a cyclohexane-derived diamine were prepared and evaluated as chiral catalysts in desymmetrisation of meso-diols and asymmetric Henry reactions. Mono-benzoylation reactions generated two products with high enantioselectivity (90:10 to 97:3 er). Asymmetric Henry reactions gave nitro alcohols in 90:10 to 98:2 er. Notably, the sense of induction with the (+)-sparteine surrogates was opposite to that obtained using the copper(II)/(?)-sparteine complex. One of the nitro alcohol products was utilised in a concise synthesis of a chiral morpholine.
One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols
Schrittwieser, Joerg H.,Coccia, Francesca,Kara, Selin,Grischek, Barbara,Kroutil, Wolfgang,D'Alessandro, Nicola,Hollmann, Frank
, p. 3318 - 3331 (2013/12/04)
One-pot combinations of sequential catalytic reactions can offer practical and ecological advantages over classical multi-step synthesis schemes. In this context, the integration of enzymatic and chemo-catalytic transformations holds particular potential for efficient and selective reaction sequences that would not be possible using either method alone. Here, we report the one-pot combination of alcohol dehydrogenase-catalysed asymmetric reduction of 2-azido ketones and Pd nanoparticle-catalysed hydrogenation of the resulting azido alcohols, which gives access to both enantiomers of aromatic 1,2-amino alcohols in high yields and excellent optical purity (ee >99%). Furthermore, we demonstrate the incorporation of an upstream azidolysis and a downstream acylation step into the one-pot system, thus establishing a highly integrated synthesis of the antiviral natural product (S)-tembamide in 73% yield (ee >99%) over 4 steps. Avoiding the purification and isolation of intermediates in this synthetic sequence leads to an unprecedentedly low ecological footprint, as quantified by the E-factor and solvent demand.
Asymmetric reduction of α-keto aldoxime o -ethers
Bosiak, Mariusz J.,Pakulski, Marcin M.
, p. 316 - 324 (2011/03/18)
The catalytic asymmetric reduction of -keto aldoxime O-methyl, O-benzyl, and O-trityl ethers, derived from substituted acetophenones, with borane/oxazaborolidines, by transfer hydrogenation, and with yeast, was studied. The reduction with borane/oxazaborolidines produced the corresponding -hydroxy oxime ethers, -hydroxy hydroxylamine ethers, and -amino alcohols in 39-78% yields and up to 77% ee. The carbonyl group was selectively reduced by transfer hydrogenation with formic acid-triethylamine catalyzed by RhCl[(R,R)-TsDPEN](Ce, and also with yeast, producing -hydroxy oxime ethers, up to 75% ee and 93% ee, respectively. Georg Thieme Verlag Stuttgart New York.