55747-72-3Relevant articles and documents
Trichloroisocyanuric acid (TCCA) and carboxamide interactions in TCCA/NaNO2 triggered nitration of pyrrole and indole in aqueous aprotic media: A kinetic correlation of solvent properties with reactivity
Duguta, Govardhan,Muddam, Bhooshan,Kamatala, Chinna Rajanna,Utkoor, Umesh Kumar
, p. 164 - 186 (2020/10/02)
This study deals with the trichloroisocyanuric acid (TCCA) interactions with carboxamides like formamide (FMA), N,N′-dimethyl formamide (DMF), and N,N′-dimethyl acetamide (DMA) interactions during the nitration of heterocyclic compounds (HC) like pyrrole and indole in the presence of excess of [NaNO2] over the concentrations of all other reactants. All the reactions were performed in aqueous acetonitrile media containing carboxamide under acid-free conditions. Kinetics of the reactions revealed first order in [nitrating agent] and [HC] under otherwise similar conditions. To gain an insight into the reactive species and role of added carboxamide (FAA, DMF, DMA, etc.), the observed rates of the nitration reaction (log k) were analyzed as a function of (1/D), ([D ? 1]/[2D + 1]), mole fraction (nx), and volume (%) of carboxamide, 1/viscosity, density refractive index function), and Hildebrand solubility parameter plots. Linear regression analysis gave very good correlation coefficients (R2 values), which indicate the importance of several solvent properties in addition to the role of dielectric constant (D) of the reaction media. Multiple linear solvent energy relationships suggested by Abraham, Koppel, Palm, and Taft also afforded very good correlation coefficient (R2 values), showing the importance of cumulative effect of solvent properties. Besides these features, the negative entropies of activation (?S#) suggest greater solvation in the transition state. Isokinetic temperature (β) values for different protocols were very close to the experimental temperature range (303-323 K), indicating the importance of both enthalpy and entropy factors in controlling the reaction.
Structural understanding of 5-(4-hydroxy-phenyl)-N-(2-(5-methoxy-1H-indol-3-yl)-ethyl)-3-oxopentanamide as a neuroprotectant for Alzheimer's disease
Green, Jakob,Jiang, Yuqi,Kellogg, Glen E.,Saathoff, John,Xu, Yiming,Zhang, Shijun
supporting information, (2021/05/19)
In our continuing efforts to develop novel neuroprotectants for Alzheimer's disease (AD), a series of analogs based on a lead compound that was recently shown to target the mitochondrial complex I were designed, synthesized and biologically characterized to understand the structure features that are important for neuroprotective activities. The results from a cellular AD model highlighted the important roles of the 4-OH on the phenyl ring and the 5-OCH3 on the indole ring of the lead compound. The results also demonstrated that the β-keto moiety can be modified to retain or improve the neuroprotective activity. Docking studies of selected analogs to the FMN site of mitochondrial complex I also supported the observed neuroprotective activities. Collectively, the results provide further information to guide optimization and development of analogs based on this chemical scaffold as neuroprotectants with a novel mechanism of action for AD.
Facile in Vitro Biocatalytic Production of Diverse Tryptamines
McDonald, Allwin D.,Perkins, Lydia J.,Buller, Andrew R.
, p. 1939 - 1944 (2019/07/08)
Tryptamines are a medicinally important class of small molecules that serve as precursors to more complex, clinically used indole alkaloid natural products. Typically, tryptamine analogues are prepared from indoles through multistep synthetic routes. In the natural world, the desirable tryptamine synthon is produced in a single step by l-tryptophan decarboxylases (TDCs). However, no TDCs are known to combine high activity and substrate promiscuity, which might enable a practical biocatalytic route to tryptamine analogues. We have now identified the TDC from Ruminococcus gnavus as the first highly active and promiscuous member of this enzyme family. RgnTDC performs up to 96 000 turnovers and readily accommodates tryptophan analogues with substituents at the 4, 5, 6, and 7 positions, as well as alternative heterocycles, thus enabling the facile biocatalytic synthesis of >20 tryptamine analogues. We demonstrate the utility of this enzyme in a two-step biocatalytic sequence with an engineered tryptophan synthase to afford an efficient, cost-effective route to tryptamines from commercially available indole starting materials.
IDO inhibitors
-
Page/Page column 309; 310, (2018/09/02)
Presently provided are methods for (a) modulating an activity of indoleamine 2,3-dioxygenase comprising contacting an indoleamine 2,3-dioxygenase with a modulation effective amount of a compound as described in one of the aspects described herein; (b) treating indoleamine 2,3-dioxygenase (IDO) mediated immunosuppression in a subject in need thereof, comprising administering an effective indoleamine 2,3-dioxygenase inhibiting amount of a compound as described in one of the aspects described herein; (c) treating a medical conditions that benefit from the inhibition of enzymatic activity of indoleamine-2,3-dioxygenase comprising administering an effective indoleamine 2,3-dioxygenase inhibiting amount of a compound as described in one of the aspects described herein; (d) enhancing the effectiveness of an anti-cancer treatment comprising administering an anti-cancer agent and a compound as described in one of the aspects described herein; (e) treating tumor-specific immunosuppression associated with cancer comprising administering an effective indoleamine 2,3-dioxygenase inhibiting amount of a compound as described in one of the aspects described herein; and (f) treating immunosuppression associated with an infectious disease, e.g., HIV-I infection, comprising administering an effective indoleamine 2,3-dioxygenase inhibiting amount a compound as described in one of the aspects described herein.
Method for reducing intraocular pressure using indole derivatives
-
, (2008/06/13)
The present invention provides a method of reducing intraocular pressure by administering pharmaceutical compositions comprising indole derivatives. The pharmaceutical compositions useful in this invention comprise indole derivatives and melatonin analogs of Formulae I-IV. A preferred embodiment is a method of lowering intraocular pressure using 5-(methoxycarbonylamino)-N-acetyltryptamine (5-MCA-NAT), also known as GR 135531, which has a prolonged duration of action and greater efficacy in lowering intraocular pressure compared to melatonin. The present invention further provides a method of treating disorders associated with ocular hypertension, and a method of treating various forms of glaucoma; the method comprises administering an effective dose of a pharmacuetical composition comprising an indole derivative with or without agents commonly used to treat such disorders.