552-66-9Relevant articles and documents
Biosynthesis of novel daidzein derivatives using Bacillus amyloliquefaciens whole cells
Kim, Kyu-Min,Park, Jin-Soo,Choi, HaeRi,Kim, Min-Seon,Seo, Joo-Hyun,Pandey, Ramesh Prasad,Kim, Jin Woo,Hyun, Chang-Gu,Kim, Seung-Young
, p. 469 - 475 (2018)
Biotransformation of daidzein was performed by using Bacillus amyloliquefaciens KCTC 13588, Lactococcus lactis subsp. lactis KCTC 3769, Leuconostoc citreum KCTC 13186, Kluyveromyces lactis var. lactis KCTC 17704, Pediococcus pentosaceus KCTC 3116, and Lac
Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis
He, Jun-Bin,Zhao, Peng,Hu, Zhi-Min,Liu, Shuang,Kuang, Yi,Zhang, Meng,Li, Bin,Yun, Cai-Hong,Qiao, Xue,Ye, Min
supporting information, p. 11513 - 11520 (2019/07/16)
Herein, the catalytic promiscuity of TcCGT1, a new C-glycosyltransferase (CGT) from the medicinal plant Trollius chinensis is explored. TcCGT1 could efficiently and regio-specifically catalyze the 8-C-glycosylation of 36 flavones and other flavonoids and could also catalyze the O-glycosylation of diverse phenolics. The crystal structure of TcCGT1 in complex with uridine diphosphate was determined at 1.85 ? resolution. Molecular docking revealed a new model for the catalytic mechanism of TcCGT1, which is initiated by the spontaneous deprotonation of the substrate. The spacious binding pocket explains the substrate promiscuity, and the binding pose of the substrate determines C- or O-glycosylation activity. Site-directed mutagenesis at two residues (I94E and G284K) switched C- to O-glycosylation. TcCGT1 is the first plant CGT with a crystal structure and the first flavone 8-C-glycosyltransferase described. This provides a basis for designing efficient glycosylation biocatalysts.
Assessing the regioselectivity of oleD-catalyzed glycosylation with a diverse set of acceptors
Zhou, Maoquan,Hamza, Adel,Zhan, Chang-Guo,Thorson, Jon S.
, p. 279 - 286 (2013/06/05)
To explore the acceptor regioselectivity of OleD-catalyzed glucosylation, the products of OleD-catalyzed reactions with six structurally diverse acceptors flavonesnY (daidzein), isoflavones (flavopiridol), stilbenes (resveratrol), indole alkaloids (10-hydroxycamptothecin), and steroids (2- methoxyestradiol)- were determined. This study highlights the first synthesis of flavopiridol and 2-methoxyestradiol glucosides and confirms the ability of OleD to glucosylate both aromatic and aliphatic nucleophiles. In all cases, molecular dynamics simulations were consistent with the determined product distribution and suggest the potential to develop a virtual screening model to identify additional OleD substrates.