501-97-3Relevant articles and documents
Chemical constituents from Ginkgo biloba leaves and their cytotoxicity activity
Shu, Penghua,Sun, Mengyuan,Li, Junping,Zhang, Lingxiang,Xu, Haichang,Lou, Yueyue,Ju, Zhiyu,Wei, Xialan,Wu, Wenming,Sun, Na
, p. 269 - 274 (2020)
One novel neoligan glucoside, Ginkgoside B (1), and one new glucose ester, 6-O-(4-hydroxyhydrocinnamoyl)-d-glucopyranose (2), along with nine known compounds (3–11) were isolated from the ethanol extract of Ginkgo biloba leaves. Their structures were elucidated by combination of spectroscopic analyses and alkaline methanolysis. The absolute configuration of compound 1 was determined by single-crystal X-ray diffraction. All the isolated compounds were evaluated for their cytotoxicity activities, and compound 11 exhibited IC50 values of 36.20 and 58.95?μM against 5637 and HeLa cell lines, respectively.
Catalytic SNAr Hydroxylation and Alkoxylation of Aryl Fluorides
Kang, Qi-Kai,Li, Ke,Li, Yuntong,Lin, Yunzhi,Shi, Hang,Xu, Lun
supporting information, p. 20391 - 20399 (2021/08/13)
Nucleophilic aromatic substitution (SNAr) is a powerful strategy for incorporating a heteroatom into an aromatic ring by displacement of a leaving group with a nucleophile, but this method is limited to electron-deficient arenes. We have now established a reliable method for accessing phenols and phenyl alkyl ethers via catalytic SNAr reactions. The method is applicable to a broad array of electron-rich and neutral aryl fluorides, which are inert under classical SNAr conditions. Although the mechanism of SNAr reactions involving metal arene complexes is hypothesized to involve a stepwise pathway (addition followed by elimination), experimental data that support this hypothesis is still under exploration. Mechanistic studies and DFT calculations suggest either a stepwise or stepwise-like energy profile. Notably, we isolated a rhodium η5-cyclohexadienyl complex intermediate with an sp3-hybridized carbon bearing both a nucleophile and a leaving group.
Ruthenium-catalyzed intramolecular arene C(sp2)-H amidation for synthesis of 3,4-dihydroquinolin-2(1 H)-ones
Au, Chi-Ming,Ling, Cho-Hon,Sun, Wenlong,Yu, Wing-Yiu
, p. 3310 - 3314 (2021/05/29)
We report the [Ru(p-cymene)(l-proline)Cl] ([Ru1])-catalyzed cyclization of 1,4,2-dioxazol-5-ones to form dihydroquinoline-2-ones in excellent yields with excellent regioselectivity via a formal intramolecular arene C(sp2)-H amidation. The reactions of the 2- and 4-substituted aryl dioxazolones proceeds initially through spirolactamization via electrophilic amidation at the arene site, which is para or ortho to the substituent. A Hammett correlation study showed that the spirolactamization is likely to occur by electrophilic nitrenoid attack at the arene, which is characterized by a negative ρ value of -0.73.
Isolation and characterization of glycosidic tyrosinase inhibitors from typhonium giganteum rhizomes
Shu, Penghua,Zhu, Huiqing,Liu, Wanrong,Zhang, Lingxiang,Li, Junping,Yu, Mengzhu,Fei, Yingying,Cai, Shujing,Li, Ruihua,Wei, Xialan,Yi, Wenhan,Xiao, Fugang
, p. 380 - 387 (2021/06/02)
A new hydrocinnamoyl glucoside, 1-O-(4-hydroxyhydrocinnamoyl)-β-D-glucopyranose (1), together with fifteen known glycosides, including two phenylethanoid glycosides (2–3), two cinnamoyl glycosides (4–5), six phenolic glycosides (6–11), one lignan glycoside (12) and four megastigmane glycosides (13–16) were isolated from a 95% EtOH extract of the Typhonium giganteum rhizomes. The sixteen glycosides were structurally characterized by NMR, HRESIMS, enzymatic hydrolysis and comparison with literature. Upon evaluating inhibitory activities of compounds 1–16 against mushroom tyrosinase at 25 μM, compounds 10 and 11 exhibited obvious inhibitory activities, with %inhibition values of 20.94±0.59%, 23.28±1.09%, respectively, with arbutin used as the positive control (26.21±0.58%).
Hydrogenation reaction method
-
Paragraph 0034; 0057-0060, (2020/05/14)
The invention relates to a hydrogenation reaction method, and belongs to the technical field of organic synthesis. The hydrogenation reaction method provided by the invention comprises the following steps: carrying out a hydrogen transfer reaction on a hydrogen acceptor compound, pinacol borane and a catalyst in a solvent in the presence of proton hydrogen, so that the hydrogen acceptor compound is subjected to a hydrogenation reaction; the catalyst is one or more than two of a palladium catalyst, an iridium catalyst and a rhodium catalyst; the hydrogen acceptor compound comprises one or morethan two functional groups of carbon-carbon double bonds, carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-nitrogen double bonds, nitrogen-nitrogen double bonds, nitryl, carbon-nitrogentriple bonds and epoxy. The method is mild in reaction condition, easy to operate, high in yield, short in reaction time, wide in substrate application range, suitable for carbon-carbon double bonds,carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-nitrogen double bonds, nitrogen-nitrogen double bonds, nitryl, carbon-nitrogen triple bonds and epoxy functional groups, good in selectivity and high in reaction specificity.
Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration
Wang, Yong,Cao, Xinyi,Zhao, Leyao,Pi, Chao,Ji, Jingfei,Cui, Xiuling,Wu, Yangjie
supporting information, p. 4119 - 4129 (2020/08/10)
A generalized, simple and efficient transfer hydrogenation of unsaturated bonds has been developed using HBPin and various proton reagents as hydrogen sources. The substrates, including alkenes, alkynes, aromatic heterocycles, aldehydes, ketones, imines, azo, nitro, epoxy and nitrile compounds, are all applied to this catalytic system. Various groups, which cannot survive under the Pd/C/H2 combination, are tolerated. The activity of the reactants was studied and the trends are as follows: styrene'diphenylmethanimine'benzaldehyde'azobenzene'nitrobenzene'quinoline'acetophenone'benzonitrile. Substrates bearing two or more different unsaturated bonds were also investigated and transfer hydrogenation occurred with excellent chemoselectivity. Nano-palladium catalyst in situ generated from Pd(OAc)2 and HBPin extremely improved the TH efficiency. Furthermore, chemoselective anti-Markovnikov hydrodeuteration of terminal aromatic olefins was achieved using D2O and HBPin via in situ HD generation and discrimination. (Figure presented.).
Copper and L-(?)-quebrachitol catalyzed hydroxylation and amination of aryl halides under air
Bao, Xuefei,Chen, Guoliang,Dong, Jinhua,Du, Fangyu,Li, Hui,Liang, Xinjie,Wu, Ying,Zhang, Yongsheng
supporting information, (2020/08/03)
L-(?)-Quebrachitol, a natural product obtained from waste water of the rubber industry, was utilized as an efficient ligand for the copper-catalyzed hydroxylation and amination of aryl halides to selectively give phenols and aryl amines in water or 95percent ethanol. In addition, the hydroxylation of 2-chloro-4-hydroxybenzoic acid was validated on a 100-g scale under air.
Method for preparing p-hydroxyphenylpropionic acid by using tubular reactor
-
Paragraph 0023; 0026-0030, (2019/07/01)
The invention belongs to the field of drug synthesis, and relates to a method for preparing p-hydroxyphenylpropionic acid by using a tubular reactor. The method is characterized in that p-hydroxyphenylpropionic acid is subjected to high temperature gas phase synthesis by using a tubular reactor; the structure of the reactor, the reaction temperature, the material ratio and the residence time are investigated to obtain the influence of the fluid flow field in the tubular reactor on the chemical reaction and the product yield so as to achieve the optimal process parameters; with the applicationof the tubular reactor to prepare the p-hydroxyphenylpropionic acid, the problems of long reaction time, more by-products and low yield of the traditional process are solved; and the tubular reactor has large heat transfer and mass transfer area, and the operation of the high temperature gas phase synthesis of the p-hydroxyphenylpropionic acid with the tubular reactor is continuous, such that theadvantages of the reactor are fully utilized, the production efficiency is high, the economic value of the product is large, and the industrial application prospect is good.
Application of quebrachitol in hydrolysis reaction of copper-catalyzed aryl halide
-
Paragraph 0060-0062, (2019/07/16)
The invention belongs to the technical field of drug synthesis, and provides application of quebrachitol in a hydrolysis reaction of a copper-catalyzed aryl halide. According to the hydrolysis reaction, copper serves as a catalyst, quebrachitol serves as a ligand, and the hydrolysis reaction is carried out on the aryl halide. The invention further provides a catalytic system of the hydrolysis reaction of the aryl halide. The reaction system comprises the copper catalyst, the quebrachitol, alkali and water, and the system is environmentally friendly and is suitable for industrial application.
Site-Selective, Remote sp3 C?H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis
Sahoo, Basudev,Bellotti, Peter,Juliá-Hernández, Francisco,Meng, Qing-Yuan,Crespi, Stefano,K?nig, Burkhard,Martin, Ruben
, p. 9001 - 9005 (2019/06/24)
A photoinduced carboxylation of alkyl halides with CO2 at remote sp3 C?H sites enabled by the merger of photoredox and Ni catalysis is described. This protocol features a predictable reactivity and site selectivity that can be modulated by the ligand backbone. Preliminary studies reinforce a rationale based on a dynamic displacement of the catalyst throughout the alkyl side chain.