4656-80-8Relevant articles and documents
Oral administration of diphenylarsinic acid, a degradation product of chemical warfare agents, induces oxidative and nitrosative stress in cerebellar Purkinje cells
Kato, Koichi,Mizoi, Mutsumi,An, Yan,Nakano, Masayuki,Wanibuchi, Hideki,Endo, Ginji,Endo, Yoko,Hoshino, Mikio,Okada, Shoji,Yamanaka, Kenzo
, p. 1518 - 1525 (2007)
A new clinical syndrome with prominent cerebellar symptoms in patients living in Kamisu City, Ibaraki Prefecture, Japan, is described. Since the patients ingested drinking water containing diphenylarsinic acid (DPA), a stable degradation product of both diphenylcyanoarsine and diphenylchloroarsine, which were developed for use as chemical weapons and cause severe vomiting and sneezing, DPA was suspected of being responsible for the clinical syndrome. The purpose of the present study was to elucidate prominent cerebellar symptoms due to DPA. The aim of the study was to determine if single (15 mg/kg) or continuous (5 mg/kg/day for 5 weeks) oral administration of DPA to ICR-strain mice induced oxidative and/or nitrosative stress in their brain. Significantly positive staining with malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) was observed in the cerebellar Purkinje cells by repeated administration (5 mg/kg/day) with DPA for 5 weeks that led to the cerebellar symptoms from a behavioral pharmacology standpoint and by single administration of DPA (15 mg/kg). Furthermore, it is possible that the production of 3-NT was not caused by peroxynitrite formation. The present results suggest the possibility that arsenic-associated novel active species may be a factor underlying the oxidative and nitrosative stress in Purkinje cells due to exposure to DPA, and that the damage may lead to the cerebellar symptoms.
Studies on the air oxidation of some arsenic(III) compounds
Sideris, Theodore D.,Ioannou, Panayiotis V.
, p. 751 - 762 (2007/10/03)
The air oxidation of As(III) oxides [(PhAsO)x and Ph 2As-O-AsPh2] and thioesters [Ph-As(SPh)2, Ph2As-SPh Me-As(SPh)2, Me2As-SPh], in chloroform and in methanol was studied. The air oxidation in chloroform was faster probably because the solubility of dioxygen is greater than in methanol, and it is favored by the electron-withdrawing phenyl groups bound to As(III). The products obtained were the arsonic or arsinic acids and diphenyl disulfide. In one case, diphenyl disulfide and thiophenol were produced. The results can be rationalized by assuming first hydrolysis of the As(III) compounds to arsonous or arsinous acids followed by their oxidation to arsonic and arsinic acids, which should involve the binding of dioxygen to As(III). The other hypothesis assumes first the binding of dioxygen to As(III) of these oxides and thioesters followed by the decomposition of the adducts. The binding of the ground state dioxygen to As(III) may have biochemical implications for toxicity or chemotherapy of arsenic(III) compounds. Copyright Taylor & Francis Group, LLC.