Welcome to LookChem.com Sign In|Join Free

CAS

  • or

459-47-2

Post Buying Request

459-47-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

459-47-2 Usage

Uses

1-Ethyl-4-fluorobenzene is used as pharmaceutical Intermediates.

Check Digit Verification of cas no

The CAS Registry Mumber 459-47-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,5 and 9 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 459-47:
(5*4)+(4*5)+(3*9)+(2*4)+(1*7)=82
82 % 10 = 2
So 459-47-2 is a valid CAS Registry Number.
InChI:InChI=1/C8H9F/c1-2-7-3-5-8(9)6-4-7/h3-6H,2H2,1H3

459-47-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L05940)  1-Ethyl-4-fluorobenzene, 97%   

  • 459-47-2

  • 5g

  • 1134.0CNY

  • Detail
  • Alfa Aesar

  • (L05940)  1-Ethyl-4-fluorobenzene, 97%   

  • 459-47-2

  • 25g

  • 4538.0CNY

  • Detail

459-47-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-Ethyl-4-fluorobenzene

1.2 Other means of identification

Product number -
Other names 1-ETHYL-4-FLUOROBENZENE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:459-47-2 SDS

459-47-2Relevant articles and documents

Selective hydrogenation of substituted styrene to alkylbenzene catalyzed by Al2O3 nanoparticles

Kaleeswari, Kalairajan,Tamil Selvi, Arunachalam

, (2022/01/22)

A straightforward and suitable protocol is described for the conversion of substituted styrene to alkylbenzenes in the presence of Al2O3 nanoparticles (nano-Al2O3) as heterogeneous solid catalysts using N2H4·H2O as a hydrogen source under mild reaction conditions. A complete conversion of styrene is obtained using nano-Al2O3 as a heterogeneous catalyst. Besides, this catalyst system is also successfully applied to promote the broad range of styrene substituted derivatives to their respective alkylbenzene compounds in moderate to higher conversions. The reaction is discovered to be heterogeneous in nature and nano-Al2O3 can be reused for three runs with no diminish in its performance. Besides, the analyses of the fresh and three times reused nano-Al2O3 solid by various analytical techniques. Transmission electron microscope indicates that the structural features, surface morphology, and particle size endure unchanged throughout the reaction. Some of the significant features of this procedure are mild reaction conditions, price effectiveness of the catalyst (Pd or Pt free catalyst), high conversion, functional group endurance, absence of noble metals/additives, and reusability of the catalyst. The scope of the reaction procedure can be extended to various linear and cyclic alkenes. Graphical abstract: [Figure not available: see fulltext.]

Ligand-enabled and magnesium-activated hydrogenation with earth-abundant cobalt catalysts

Han, Bo,Jiao, Hongmei,Ma, Haojie,Wang, Jijiang,Zhang, Miaomiao,Zhang, Yuqi

, p. 39934 - 39939 (2021/12/31)

Replacing expensive noble metals like Pt, Pd, Ir, Ru, and Rh with inexpensive earth-abundant metals like cobalt (Co) is attracting wider research interest in catalysis. Cobalt catalysts are now undergoing a renaissance in hydrogenation reactions. Herein, we describe a hydrogenation method for polycyclic aromatic hydrocarbons (PAHs) and olefins with a magnesium-activated earth-abundant Co catalyst. When diketimine was used as a ligand, simple and inexpensive metal salts of CoBr2in combination with magnesium showed high catalytic activity in the site-selective hydrogenation of challenging PAHs under mild conditions. Co-catalyzed hydrogenation enabled the reduction of two side aromatics of PAHs. A wide range of PAHs can be hydrogenated in a site-selective manner, which provides a cost-effective, clean, and selective strategy to prepare partially reduced polycyclic hydrocarbon motifs that are otherwise difficult to prepare by common methods. The use of well-defined diketimine-ligated Co complexes as precatalysts for selective hydrogenation of PAHs and olefins is also demonstrated.

Copper(II)-Doped ZIF-8 as a Reusable and Size Selective Heterogeneous Catalyst for the Hydrogenation of Alkenes using Hydrazine Hydrate

Nagarjun, Nagarathinam,Arthy, Kannan,Dhakshinamoorthy, Amarajothi

, p. 2108 - 2119 (2021/06/01)

In recent years, synthesis of mixed-metal organic frameworks has received considerable attention due to their superior performance than with mono-metallic metal organic frameworks (MOFs). In the present manuscript, Cu2+ ions are doped within the framework of ZIF-8 (ZIF: Zeolitic Imidazolate Frameworks) to obtain Cu@ZIF-8 and is characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Visible diffuse reflectance spectra (DRS), scanning electron microscope (SEM) and transmission electron microcope (TEM) studies. The reaction conditions are optimized with styrene as a model substrate using Cu@ZIF-8 as a solid catalyst. Heterogeneity of the reaction is confirmed by leaching test and the solid is reusable for three recycles with no diminishing activity. Further, the structural integrity of Cu@ZIF-8 is also retained after hydrogenation of styrene as evidenced by powder X-ray diffraction. The size selective catalysis of Cu@ZIF-8 is demonstrated by comparing the activity of Cu2+ ions adsorbed over ZIF-8 solid (Cu/ZIF-8) in the hydrogenation of 1-hexene, 1-octene, cyclohexene, cyclooctene and t-stilbene. The catalytic results indicate that Cu/ZIF-8 shows superior activity than Cu@ZIF-8 for all these olefins due to the lack of diffusion to access the active sites (Cu2+). In contrast, Cu@ZIF-8 exhibits higher activity for those olefins with lower molecular dimensions (1-hexene, 1-octene) than the pores of ZIF-8 indicating the facile diffusion of these substrates inside the pores ZIF-8 while poor activity is observed with t-stilbene due to its larger molecular dimension than the pore apertures of ZIF-8. These catalytic data clearly establish the size selective hydrogenation of Cu@ZIF-8 due to the effective confinement provided by ZIF-8 framework and the presence of the active sites within the framework. Furthermore, this is the first report showing the size selective hydrogenation of olefins promoted by Cu@ZIF-8 (mixed-metal MOFs) compared to other noble metal nanoparticles (NPs) embedded over MOFs as catalysts.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 459-47-2