459-22-3Relevant articles and documents
From Stoichiometric Reagents to Catalytic Partners: Selenonium Salts as Alkylating Agents for Nucleophilic Displacement Reactions in Water
Martins, Nayara Silva,ángel, Alix Y. Bastidas,Anghinoni, Jo?o M.,Lenard?o, Eder J.,Barcellos, Thiago,Alberto, Eduardo E.
supporting information, p. 87 - 93 (2021/11/03)
The ability of chalcogenium salts to transfer an electrophilic moiety to a given nucleophile is well known. However, up to date, these reagents have been used in stoichiometric quantities, producing a substantial amount of waste as byproducts of the reaction. In this report, we disclose further investigation of selenonium salts as S-adenosyl-L-methionine (SAM) surrogates for the alkylation of nucleophiles in aqueous solutions. Most importantly, we were able to convert the stoichiometric process to a catalytic system employing as little as 10 mol % of selenides to accelerate the reaction between benzyl bromide and other alkylating agents with sodium cyanide in water. Probe experiments including 77Se NMR and HRMS of the reaction mixture have unequivocally shown the presence of the selenonium salt in the reaction mixture. (Figure presented.).
Assembly of α-(Hetero)aryl Nitriles via Copper-Catalyzed Coupling Reactions with (Hetero)aryl Chlorides and Bromides
Chen, Ying,Xu, Lanting,Jiang, Yongwen,Ma, Dawei
supporting information, p. 7082 - 7086 (2021/02/26)
α-(Hetero)aryl nitriles are important structural motifs for pharmaceutical design. The known methods for direct synthesis of these compounds via coupling with (hetero)aryl halides suffer from narrow reaction scope. Herein, we report that the combination of copper salts and oxalic diamides enables the coupling of a variety of (hetero)aryl halides (Cl, Br) and ethyl cyanoacetate under mild conditions, affording α-(hetero)arylacetonitriles via one-pot decarboxylation. Additionally, the CuBr/oxalic diamide catalyzed coupling of (hetero)aryl bromides with α-alkyl-substituted ethyl cyanoacetates proceeds smoothly at 60 °C, leading to the formation of α-alkyl (hetero)arylacetonitriles after decarboxylation. The method features a general substrate scope and is compatible with various functionalities and heteroaryls.
Reductive cyanation of organic chlorides using CO2 and NH3 via Triphos–Ni(I) species
Dong, Yanan,Li, Yuehui,Yang, Peiju,Zhao, Shizhen
, (2020/08/19)
Cyano-containing compounds constitute important pharmaceuticals, agrochemicals and organic materials. Traditional cyanation methods often rely on the use of toxic metal cyanides which have serious disposal, storage and transportation issues. Therefore, there is an increasing need to develop general and efficient catalytic methods for cyanide-free production of nitriles. Here we report the reductive cyanation of organic chlorides using CO2/NH3 as the electrophilic CN source. The use of tridentate phosphine ligand Triphos allows for the nickel-catalyzed cyanation of a broad array of aryl and aliphatic chlorides to produce the desired nitrile products in good yields, and with excellent functional group tolerance. Cheap and bench-stable urea was also shown as suitable CN source, suggesting promising application potential. Mechanistic studies imply that Triphos-Ni(I) species are responsible for the reductive C-C coupling approach involving isocyanate intermediates. This method expands the application potential of reductive cyanation in the synthesis of functionalized nitrile compounds under cyanide-free conditions, which is valuable for safe synthesis of (isotope-labeled) drugs.