456-49-5Relevant articles and documents
A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen
Anwar, Muhammad,Beller, Matthias,Dastgir, Sarim,Junge, Kathrin,Leonard, David K.,Ryabchuk, Pavel
, (2022/02/03)
Hydrodehalogenation is an effective strategy for transforming persistent and potentially toxic organohalides into their more benign congeners. Common methods utilize Pd/C or Raney-nickel as catalysts, which are either expensive or have safety concerns. In this study, a nickel-based catalyst supported on titania (Ni-phen@TiO2-800) is used as a safe alternative to pyrophoric Raney-nickel. The catalyst is prepared in a straightforward fashion by deposition of nickel(II)/1,10-phenanthroline on titania, followed by pyrolysis. The catalytic material, which was characterized by SEM, TEM, XRD, and XPS, consists of nickel nanoparticles covered with N-doped carbon layers. By using design of experiments (DoE), this nanostructured catalyst is found to be proficient for the facile and selective hydrodehalogenation of a diverse range of substrates bearing C?I, C?Br, or C?Cl bonds (>30 examples). The practicality of this catalyst system is demonstrated by the dehalogenation of environmentally hazardous and polyhalogenated substrates atrazine, tetrabromobisphenol A, tetrachlorobenzene, and a polybrominated diphenyl ether (PBDE).
Efficient synthesis method of meta-fluoranisole (by machine translation)
-
, (2020/06/05)
The method is characterized by comprising the following steps: taking m-chloronitrobenzene as a raw material, carrying out high-temperature chlorination reaction, nitration reaction and fluorination reaction to obtain 2,4 - 2,4 -difluorobenzene and carrying out a methoxylation reaction with m-difluorobenzene as a raw material and carrying out methoxylation reaction to obtain m-fluorobenzyl ether; and the hydrogenation catalyst is a porous alumina loaded NiO-Co222O3-MoOO3 composite catalyst. The method disclosed by the invention is simple in process and high in product yield. (by machine translation)
Application of trivalent iodine compounds as catalysts in Bal-Schiemann reaction
-
Paragraph 0152; 0158, (2018/10/19)
The invention discloses an application of trivalent iodine compounds shown in formula I and/or II in the description and used as catalysts in Bal-Schiemann reaction. The trivalent iodine compounds areused as the catalysts in the Bal-Schiemann reaction, so that the Bal-Schiemann reaction can be conducted at room temperature or near room temperature when a thermochemical method is used, and the reaction has mild reaction conditions, wide substrate use range and short reaction time, and is safe and easy to operate, products are easy to separate, and raw materials are simple and low in toxicity.