38862-65-6Relevant articles and documents
Crystalline Form of Cannabidiol
-
Paragraph 0081, (2018/01/09)
Crystalline Cannabidiol of a novel form, including (R,R)-(?)-crystalline Cannabidiol, as well as methods of making such novel form of Cannabidiol, pharmaceutical formulations comprising such novel form of Cannabidiol, and methods of treating diseases with such novel form of Cannabidiol.
Process for production of delta-9- tetrahydrocannabinol
-
Page/Page column 9, (2010/11/26)
The present invention relates to a process for preparation of a delta-9-tetrahydrocannabinol compound or derivative thereof involving treating a first intermediate compound with an organoaluminum-based Lewis acid catalyst, under conditions effective to produce the delta-9-tetrahydrocannabinol compound or derivative thereof. Another aspect of the present invention relates to a process for preparation of a cannabidiol or cannabidiolate compound involving reacting a first starting compound with a second starting compound in the presence of a metal triflate catalyst, under conditions effective to form the cannabidiol or cannabidiolate compound. The present invention also relates to a compound of the formula: where R8, R9, and R10 are the same or different and independently selected from the group consisting of H, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or halo, with R1, R2, and R3 defined herein.
Inhibition of prostaglandin biosynthesis by 4-O-methylcryptochlorophaeic acid; synthesis of monomeric arylcarboxylic acids for inhibitory activity testing and X-ray analysis of 4-O-methylcryptochlorophaeic acid
Shibuya,Ebizuka,Noguchi,Iitaka,Sankawa
, p. 407 - 413 (2007/10/02)
In order to clarify the structure-activity relationship of 4-O-methylcryptochlorophaeic acid (1), which is a lichen meta-depside and a potent inhibitor of prostaglandin (PG) biosynthesis found in our previous screening work, arylcarboxylic acids (5-8) corresponding to the monomeric moieties of 4-O-methylcryptochlorophaeic acid (1) were synthesized and tested for inhibitory effect against PG biosynthesis by an enzyme system prepared from rabbit renal medulla. They were a hundred times less active that 4-O-methylcryptochlorophaeic acid (1), indicating that the dimeric structure of the meta-depside is essential for inhibitory activity against PG biosynthesis. Kinetic studies on the mechanism of inhibition revealed that 4-O-methylcryptochlorophaeic acid (1) inhibits PG biosynthesis competitively with respect to the substrate, arachidonic acid. The three dimensional structure of 4-O-methylcryptochlorophaeic acid (1), which is expected to have a molecular structure able to fit into an active site that accommodates arachidonic acid, was determined by single crystal X-ray analysis with the direct approach. The obtained structure reveals that 4-O-methylcryptochlorophaeic acid (1) maintains a rigid conformation by forming a strong hydrogen bond between a hydroxy group and a methoxy group. Based on these findings, a new active site model of fatty acid cylooxygenase is proposed in order to explain the inhibition by the meta-depside and acidic non-steroidal antiinflammatory drugs.