383-53-9Relevant articles and documents
Imidazolylacetophenone oxime-based multifunctional neuroprotective agents: Discovery and structure-activity relationships
Ren, Bo,Guo, Cong,Liu, Run-Ze,Bian, Zhao-Yuan,Liu, Rong-Chun,Huang, Lan-Fang,Tang, Jiang-Jiang
, (2021/12/09)
Alzheimer's disease (AD) possesses a complex pathogenetic mechanism. Nowadays, multitarget agents are considered to have potential in effectively treating AD via triggering molecules in functionally complementary pathways at the same time. Here, based on the screening (~1400 compounds) against neuroinflammation, an imidazolylacetophenone oxime ether (IOE) was discovered as a novel hit. In order to obtain SARs, a series of imidazolylacetophenone oxime derivatives were constructed, and their C=N bonds were confirmed as the Z configuration by single crystals. These derivatives exhibited potential multifunctional neuroprotective effects including anti-neuroin?ammatory, antioxidative damage, metal-chelating, inhibition of acetylcholinesterase (AChE) properties. Among these derivatives, compound 12i displayed the most potent inhibitory activity against nitric oxide (NO) production with EC50 value of 0.57 μM 12i can dose-dependently suppress the expression of iNOS and COX-2 but not change the expression of HO-1 protein. Moreover, 12i exhibited evidently neuroprotective effects on H2O2-induced PC12 cells damage and ferroptosis without cytotoxicity at 10 μM, as well as selectively metal chelating properties via chelating Cu2+. In addition, 12i showed a mixed-type inhibitory effect on AChE in vitro. The structure-activity relationships (SARs) analysis indicated that dioxolane groups on benzene ring and rigid oxime ester can improve the activity. Parallel artificial membrane permeation assay (PAMPA) also verified that 12i can overcome the blood-brain barrier (BBB). Overall, this is the ?rst report on imidazolylacetophenone oxime-based multifunctional neuroprotective effects, suggesting that this type of compounds might be novel multifunctional agents against AD.
Based on isoxazole substitution of benzamide derivatives and anti-prostate cancer drug applications
-
Paragraph 0065; 0073-0074, (2022/01/10)
The present invention discloses a class (I), formula (II) structure based on isoxazole substituted benzamide derivatives and antiprostate cancer drug applications, such isoxazole substituted benzamide derivatives, can effectively inhibit the activity of a
Base-Catalyzed Intramolecular Defluorination/O-Arylation Reaction for the Synthesis of 3-Fluoro-1,4-oxathiine 4,4-Dioxide
Kang, Lei,Zhang, Jinlong,Yang, Huameng,Qian, Jinlong,Jiang, Gaoxi
supporting information, p. 785 - 789 (2021/04/09)
A novel process involving base-catalyzed intramolecular defluorination/O-arylation of readily available α-fluoro-β-one-sulfones was realized and provided a series of 3-fluoro-1,4-oxathiine 4,4-dioxide derivatives in good to excellent yields. Unlike traditional defluorination reactions with stoichiometric base as the deacid reagent, this process is triggered by a catalytic amount of base (TMG: tetramethylguanidine) and molecular sieves serve as both an adsorbent to remove HF acid and an activator to assist C-F bond cleavage.