32896-02-9Relevant articles and documents
2-AMINO-N-(AMINO-OXO-ARYL-LAMBDA6-SULFANYLIDENE)ACETAMIDE COMPOUNDS AND THEIR THERAPEUTIC USE
-
Page/Page column 102-103, (2021/06/26)
The present invention pertains generally to the field of therapeutic compounds. More specifically the present invention pertains to certain 2-amino-N-(amino-oxo-aryl-λ6- sulfanylidene)acetamide compounds (referred to herein as ANASIA compounds) that, inter alia, inhibit (e.g., selectively inhibit) bacterial aminoacyl-tRNA synthetase (aaRS) (e.g., bacterial leucyl-tRNA synthetase, LeuRS). The present invention also pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions, both in vitro and in vivo, to inhibit (e.g., selectively inhibit) bacterial aminoacyl-tRNA synthetase; to treat disorders that are ameliorated by the inhibition (e.g., selective inhibition) of bacterial aminoacyl-tRNA synthetase; to treat bacterial infections; etc.
Isomeric effect of fluorene-based fused-ring electron acceptors to achieve high-efficiency organic solar cells
Cao, Fong-Yi,Cheng, Yen-Ju,Huang, Po-Kai,Su, Yen-Chen,Xue, Yung-Jing
supporting information, p. 5315 - 5322 (2020/03/19)
Acceptor-donor-acceptor (A-D-A) non-fullerene electron acceptors (NFEAs) using ladder-type donor structures have become the dominant n-type materials for achieving high-efficiency OSCs. In this work, two isomeric fluorene-based ladder-type structures FCTT (TT-C-F-C-TT) and FTCT (T-C-TFT-C-T) have been designed and synthesized. These two isomeric donors with the different fused-ring arrangement, molecular geometry, and side-chain placement were end-capped with the FIC acceptors to form two NFEAs FCTT-FIC and FTCT-FIC isomeric materials. Compared to FTCT-FIC using the thiophene (T)-terminal donor, FCTT-FIC with the thienothiophene (TT)-terminal donor has more evenly distributed side chains on both sides of the backbone and less steric hindrance near the FIC acceptors, which enables stronger antiparallel π-π packing among the end-groups to create a channel for efficient electron transport, as evidenced by the thin-film GIWAXS measurements. FCTT-FIC displayed a larger optical bandgap and deeper-lying energy levels than its FTCT-FIC isomer. Compared to the PBDB-T:FTCT-FIC device, the PBDB-T:FCTT-FIC device showed a higher PCE of 10.32% with an enhanced Jsc of 19.63 mA cm-2 and an FF of 69.14%. A PM6:FCTT-FIC device using PM6 as a p-type polymer achieved the highest PCE of 12.23%. By introducing PC71BM as the second acceptor to enhance the absorption at shorter wavelengths, optimize the morphology and facilitate electron transport, the ternary-blend PM6:FCTT-FIC:PC71BM (1 : 1 : 0.5 in wt%) device yielded the highest PCE of 13.37% with a Voc of 0.92 V, a higher Jsc of 19.86 mA cm-2, and an FF of 73.2%. This result demonstrated that the TT-terminal ladder-type donor is generally a better molecular design than the corresponding T-terminal ladder-type isomer for the development of new A-D-A NFEAs.
Thieno[3,2-b]thiophene-2-carboxylic acid derivatives as GPR35 agonists
Deng, Huayun,Hu, Jieyu,Hu, Haibei,He, Mingqian,Fang, Ye
scheme or table, p. 4148 - 4152 (2012/07/03)
The optimization of a series of thieno[3,2-b]thiophene-2-carboxylic acid derivatives for agonist activity against the GPR35 is reported. Compounds were optimized to achieve β-arrestin-biased agonism for developing probe molecules that may be useful for elucidating the biology and physiology of GPR35. Compound 13 was identified to the most potent GPR35 agonist, and compounds 30 and 36 exhibited the highest efficacy to cause β-arrestin translocation.