Welcome to LookChem.com Sign In|Join Free

CAS

  • or
dicyclohexylmethane is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

3178-23-2 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 3178-23-2 Structure
  • Basic information

    1. Product Name: dicyclohexylmethane
    2. Synonyms: dicyclohexylmethane;1,1'-Methylenebiscyclohexane;cyclohexylmethylcyclohexane
    3. CAS NO:3178-23-2
    4. Molecular Formula: C13H24
    5. Molecular Weight: 180.33
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 3178-23-2.mol
    9. Article Data: 42
  • Chemical Properties

    1. Melting Point: -18.64°C
    2. Boiling Point: 252.85°C
    3. Flash Point: 94.4°C
    4. Appearance: /
    5. Density: 0.8730
    6. Refractive Index: 1.4743
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: dicyclohexylmethane(CAS DataBase Reference)
    10. NIST Chemistry Reference: dicyclohexylmethane(3178-23-2)
    11. EPA Substance Registry System: dicyclohexylmethane(3178-23-2)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 3178-23-2(Hazardous Substances Data)

3178-23-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 3178-23-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,1,7 and 8 respectively; the second part has 2 digits, 2 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 3178-23:
(6*3)+(5*1)+(4*7)+(3*8)+(2*2)+(1*3)=82
82 % 10 = 2
So 3178-23-2 is a valid CAS Registry Number.

3178-23-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name cyclohexylmethylcyclohexane

1.2 Other means of identification

Product number -
Other names Cyclohexane,1,1'-methylenebis

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3178-23-2 SDS

3178-23-2Relevant articles and documents

One-pot catalytic reaction to produce high-carbon-number dimeric deoxygenated hydrocarbons from lignin-derived monophenyl vanillin using Al2O3-cogelled Ru nanoparticles

Yati, Indri,Dwiatmoko, Adid Adep,Yoon, Ji Sun,Choi, Jae-Wook,Suh, Dong Jin,Jae, Jungho,Ha, Jeong-Myeong

, p. 243 - 250 (2016)

Al2O3-cogelled Ru nanoparticle (Ru@Al) catalyst was prepared by a one-pot in-situ alumina gelation method using a PVP-stabilized Ru colloid solution. The Ru@Al catalyst exhibited excellent catalytic activity during the liquid-phase hydrodeoxygenation of vanillin, demonstrating 100% conversion, as well as significantly higher yields of fully deoxygenated compounds compared to other conventional alumina-supported Ru catalysts. We also observed better selectivity to deoxygenated dimers with the Ru@Al catalyst. The improved catalytic selectivity was attributed to the hypothesized three-dimensional structures of Al2O3 surrounding the Ru nanoparticles, which improved the two-step reaction, containing the dimerization of the phenolic compounds and the hydrodeoxygenation of phenolic dimers to produce deoxygenated high-carbon-number hydrocarbons.

Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions

Cao, Meifang,Chen, Bo,He, Chengzhi,Ouyang, Xinping,Qian, Yong,Qiu, Xueqing

supporting information, p. 846 - 857 (2022/02/09)

The one-pot conversion of lignin biomass into high-grade hydrocarbon biofuels via catalytic hydrodeoxygenation (HDO) holds significant promise for renewable energy. A great challenge for this route involves developing efficient non-noble metal catalysts to obtain a high yield of hydrocarbons under relatively mild conditions. Herein, a high-performance catalyst has been prepared via the in situ reduction of Ni phyllosilicate-like nanosheets (Ni-PS) synthesized by a reduction-oxidation strategy at room temperature. The Ni-PS precursors are partly converted into Ni0 nanoparticles by in situ reduction and the rest remain as supports. The Si-containing supports are found to have strong interactions with the nickel species, hindering the aggregation of Ni0 particles and minimizing the Ni0 particle size. The catalyst contains abundant surface defects, weak Lewis acid sites and highly dispersed Ni0 particles. The catalyst exhibits excellent catalytic activity towards the depolymerization and HDO of the lignin model compound, 2-phenylethyl phenyl ether (PPE), and the enzymatic hydrolysis of lignin under mild conditions, with 98.3% cycloalkane yield for the HDO of PPE under 3 MPa H2 pressure at 160 °C and 40.4% hydrocarbon yield for that of lignin under 3 MPa H2 pressure at 240 °C, and its catalytic activity can compete with reported noble metal catalysts.

The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl3as catalyst precursor

Bartling, Stephan,Chakrabortty, Soumyadeep,De Vries, Johannes G.,Kamer, Paul C. J.,Lund, Henrik,Müller, Bernd H.,Rockstroh, Nils

, p. 7608 - 7616 (2021/12/13)

Alkyl cyclohexanes were synthesized in high selectivity via a combined hydrogenation/hydrodeoxygenation of aromatic ketones using ligand-free RhCl3 as pre-catalyst in trifluoroethanol as solvent. The true catalyst consists of rhodium nanoparticles (Rh NPs), generated in situ during the reaction. A range of conjugated as well as non-conjugated aromatic ketones were directly hydrodeoxygenated to the corresponding saturated cyclohexane derivatives at relatively mild conditions. The solvent was found to be the determining factor to switch the selectivity of the ketone hydrogenation. Cyclohexyl alkyl-alcohols were the products using water as a solvent.

Aromatic compound hydrogenation and hydrodeoxygenation method and application thereof

-

Paragraph 0094-0096; 0098; 0100-0104, (2021/05/29)

The invention belongs to the technical field of medicines, and discloses an aromatic compound hydrogenation and hydrodeoxygenation method under mild conditions and application of the method in hydrogenation and hydrodeoxygenation reactions of the aromatic compounds and related mixtures. Specifically, the method comprises the following steps: contacting the aromatic compound or a mixture containing the aromatic compound with a catalyst and hydrogen with proper pressure in a solvent under a proper temperature condition, and reacting the hydrogen, the solvent and the aromatic compound under the action of the catalyst to obtain a corresponding hydrogenation product or/and a hydrodeoxygenation product without an oxygen-containing substituent group. The invention also discloses specific implementation conditions of the method and an aromatic compound structure type applicable to the method. The hydrogenation and hydrodeoxygenation reaction method used in the invention has the advantages of mild reaction conditions, high hydrodeoxygenation efficiency, wide substrate applicability, convenient post-treatment, and good laboratory and industrial application prospects.

Selective hydrogenation of lignin-derived compounds under mild conditions

Chen, Lu,Van Muyden, Antoine P.,Cui, Xinjiang,Laurenczy, Gabor,Dyson, Paul J.

supporting information, p. 3069 - 3073 (2020/06/17)

A key challenge in the production of lignin-derived chemicals is to reduce the energy intensive processes used in their production. Here, we show that well-defined Rh nanoparticles dispersed in sub-micrometer size carbon hollow spheres, are able to hydrogenate lignin derived products under mild conditions (30 °C, 5 bar H2), in water. The optimum catalyst exhibits excellent selectivity and activity in the conversion of phenol to cyclohexanol and other related substrates including aryl ethers.

Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh&at;SILP Catalyst

Bordet, Alexis,Emondts, Meike,Leitner, Walter,Moos, Gilles

supporting information, p. 11977 - 11983 (2020/06/02)

Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh&at;SILP(Ph3-P-NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh&at;SILP(Ph3-P-NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh&at;SILP(Ph3-P-NTf2) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin-derived aromatic ketones.

One-Pot Conversion of Lignin into Naphthenes Catalyzed by a Heterogeneous Rhenium Oxide-Modified Iridium Compound

Li, Xinxin,Zhang, Bo,Pan, Xiaoli,Ji, Jianwei,Ren, Yujing,Wang, Hua,Ji, Na,Liu, Qiying,Li, Changzhi

, p. 4409 - 4419 (2020/03/04)

The direct transformation of lignin into fuels and chemicals remains a huge challenge because of the recalcitrant and complicated structure of lignin. In this study, rhenium oxide-modified iridium supported on SiO2 (Ir-ReOx/SiO2) is employed for the one-pot conversion of various lignin model compounds and lignin feedstocks into naphthenes. Up to 100 percent yield of cyclohexane from model compounds and 44.3 percent yield of naphthenes from lignin feedstocks are achieved. 2 D HSQC NMR spectroscopy before and after the reaction confirms the activity of Ir-ReOx/SiO2 in the cleavage of the C?O bonds and hydrodeoxygenation of the depolymerized products. H2 temperature-programmed reduction, temperature-programmed desorption of NH3, IR spectroscopy of pyridine adsorption, X-ray photoelectron spectroscopy, X-ray absorption fine structure analysis, and control experiments reveal that a synergistic effect between Ir and ReOx in Ir-ReOx/SiO2 plays a crucial role in the high performance; ReOx is mainly responsible for the cleavage of C?O bonds, whereas Ir is responsible for hydrodeoxygenation and saturation of the benzene rings. This methodology opens up an energy-efficient route for the direct conversion of lignin into valuable naphthenes.

Raney nickel-catalyzed hydrodeoxygenation and dearomatization under transfer hydrogenation conditions—Reaction pathways of non-phenolic compounds

Philippov,Chibiryaev,Martyanov

, p. 35 - 42 (2019/05/27)

Catalytic reduction of oxygen-containing aromatic compounds has been studied under transfer hydrogenation (TH) conditions at 150 °C in 2-PrOH as a hydrogen donor. Raney nickel is used as a heterogeneous catalyst. The reaction of aromatic non-phenolic carbonyl compounds is most likely to proceed through the pathway “aromatic ketone (aldehyde)→aromatic alcohol→alkylaromatics→saturated alkylcyclohexane”. One of the main reactions under the TH conditions is a hydrodeoxygenation (HDO) process. Unexpectedly, the hydrodeoxygenation of aromatic ketones to alkylaromatics (C[dbnd]O → CH2) occurs faster than of corresponding aromatic alcohols (HC–OH → CH2) that means either additional reaction pathway of its hydrodeoxygenation missing for the corresponding aromatic alcohols or specific interaction of OH functionality with Raney nickel surface obstructing (hindering) the further reduction. Benzaldehyde is shown to be less reactive than the aromatic ketones under the same reaction conditions. The main reason is proposed to be carbon monoxide release resulted from the decarbonylation of the aldehyde. Carbon monoxide demonstrates a poisoning effect on Raney nickel surface that is evidenced in the catalyzed TH reaction of acetophenone. The HDO reaction of anisole under the same reaction conditions was a little slowly than of oxygen-containing non-phenolic aromatics.

Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons

Murugesan, Kathiravan,Senthamarai, Thirusangumurugan,Alshammari, Ahmad S.,Altamimi, Rashid M.,Kreyenschulte, Carsten,Pohl, Marga-Martina,Lund, Henrik,Jagadeesh, Rajenahally V.,Beller, Matthias

, p. 8581 - 8591 (2019/09/12)

The development of inexpensive and practical catalysts for arene hydrogenations is key for future valorizations of this general feedstock. Here, we report the development of cobalt nanoparticles supported on silica as selective and general catalysts for such reactions. The specific nanoparticles were prepared by assembling cobalt-pyromellitic acid-piperazine coordination polymer on commercial silica and subsequent pyrolysis. Applying the optimal nanocatalyst, industrial bulk, substituted, and functionalized arenes as well as polycyclic aromatic hydrocarbons are selectively hydrogenated to obtain cyclohexane-based compounds under industrially viable and scalable conditions. The applicability of this hydrogenation methodology is presented for the storage of H2 in liquid organic hydrogen carriers.

Synthesis of jet fuel range high-density polycycloalkanes with polycarbonate waste

Tang, Hao,Hu, Yancheng,Li, Guangyi,Wang, Aiqin,Xu, Guoliang,Yu, Cong,Wang, Xiaodong,Zhang, Tao,Li, Ning

supporting information, p. 3789 - 3795 (2019/07/31)

Jet fuel range high-density polycycloalkanes were first synthesized with polycarbonate waste by a two-step method which was conducted under mild conditions. In the first step, polycarbonate waste was converted to bisphenol by methanolysis. Subsequently, bisphenol was further converted to polycycloalkanes by hydrodeoxygenation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3178-23-2