2632-65-7Relevant articles and documents
Optimization of WZ4003 as NUAK inhibitors against human colorectal cancer
Yang, Huali,Wang, Xiaobing,Wang, Cheng,Yin, Fucheng,Qu, Lailiang,Shi, Cunjian,Zhao, Jinhua,Li, Shang,Ji, Limei,Peng, Wan,Luo, Heng,Cheng, Maosheng,Kong, Lingyi
, (2020/12/15)
NUAK, the member of AMPK (AMP-activated protein kinase) family of protein kinases, is phosphorylated and activated by the LKB1 (liver kinase B1) tumor suppressor protein kinase. Recent work has indicated that NUAK1 is a key component of the antioxidant stress response pathway, and the inhibition of NUAK1 will suppress the growth and survival of colorectal tumors. As a promising target for anticancer drugs, few inhibitors of NUAK were developed. With this goal in mind, based on NUAK inhibitor WZ4003, a series of derivatives has been synthesized and evaluated for anticancer activity. Compound 9q, a derivative of WZ4003 by removing a methoxy group, was found to be the most potential one with stronger inhibitory against NUAK1/2 enzyme activity, tumor cell proliferation and inducing apoptosis of tumor cells. By in vivo efficacy evaluations of colorectal SW480 xenografts, 9q suppresses tumor growth more effectively with an excellent safety profile in vivo and is therefore seen as a suitable candidate for further investigation.
Design, synthesis and biological evaluation of novel osthole-based derivatives as potential neuroprotective agents
Zhang, Li,Wu, Yuhang,Yang, Guixiang,Gan, Haixian,Sang, Dayong,Zhou, Jiye,Su, Lin,Wang, Rui,Ma, Lei
supporting information, (2020/11/03)
A total of 26 compounds based on osthole skeleton were designed, synthesized. Their cytoprotective abilities of antioxidation, anti-inflammation and Aβ42(Amyloid β-protein 42)-induced neurotoxicity were evaluated by MTT assays. Mechanism of the action of selected compounds were investigated by molecular docking. AlogP, logS and blood–brain barrier (BBB) permeability of all these compounds were simulated by admetSAR. Most of the compounds showed better antioxidative and anti-inflammatory activities compared with osthole, especially OST7 and OST17. The compound OST7 showed relative high activity in neuroprotection against H2O2 (45.7 ± 5.5%), oxygen glucose deprivation (64.6 ± 4.8%) and Aβ42 (61.4 ± 5.2%) at a low concentration of 10 μM. EC50 of selected compounds were measured in both H2O2 and OGD induced cytotoxicity models. Moreover, NO inhibiting ability of OST17(50.4 ± 7.1%) already surpassed the positive drug indomethacin. The structure activity relationship study indicated that introduction of piperazine group, tetrahydropyrrole group and aromatic amine group might be beneficial for enhancement of osthole neuroprotective properties. Molecular docking explained that the reason OST7 exhibited relatively stronger neuroprotection against Aβ because of the greater area of interactions between molecule and target protein. OST7 and OST17 both provided novel methods to investigate osthole as anti-AD drugs.
HETEROCYCLIC COMPOUNDS AND USES THEREOF
-
Paragraph 0604; 0607-0608, (2019/04/25)
Heterocyclic compounds as Wee1 inhibitors are provided. The compounds may find use as therapeutic agents for the treatment of diseases and may find particular use in oncology.