261909-49-3Relevant articles and documents
Synthesis of 2′-deoxy-2′-fluoro-2′-C-methyl spiro cyclopentyl carbocyclic uridine analog as potential inhibitors of HCV NS5B polymerase
Chu, Chung K.,Singh, Uma S.
, p. 52 - 68 (2020)
Synthesis of 1-((4 R,5S,6R,7R)-5,6-dihydroxy-7-(hydroxymethyl)spiro[2.4]heptan-4-yl)pyrimidine-2,4(1H,3H)-dione (12) and its phosphoramidate prodrug 18 is reported. The synthesis of the targeted compound 12 was initiated from triol 1. By the introduction of a substituent methylene group at 6-position of 4, followed by Simmons-Smith cyclopropanation and amination, key intermediate 10 was synthesized. The intermediate amine 10 was utilized to synthesize the nucleoside 12. Furthermore, the nucleoside 12 was derivatized to 2′-α-hydroxy-2′-β-methyl (23) and 2′-α-fluoro-2′-β-methyl (27) analogs. All synthesized derivatives of spiro-cyclopropyl carbocyclic uridine analogs 12, 18, 23 and 27 were evaluated for anti-HCV activity, but none of the compounds, reported in this article show any anti-HCV activity.
Synthesis of an Anti-hepatitis B Agent, 2′-Fluoro-6′-methylene-carbocyclic Adenosine (FMCA) and Its Phosphoramidate (FMCAP)
Singh, Uma S.,Mulamoottil, Varughese A.,Chu, Chung K.
, p. 752 - 759 (2019)
2′-Fluoro-6′-methylene-carbocyclic adenosine (FMCA, 12) and its phosphoramidate prodrug (FMCAP, 14) have been proven as a potential anti-HBV agent against both adefovir-resistant as well as lamivudine-resistant double (rtL180M/rtM204V) mutants. Furthermore, in vitro, these agents have demonstrated significant activity against lamivudine/entecavir triple mutants (L180M + S202G + M204V). These preliminary results encourage us for further biological evaluation of FMCA and FMCAP to develop as a potential clinical candidate as an anti-HBV agent, which may overcome the problem of drug resistance in HBV therapy. To support the preclinical exploration, a scalable synthesis of this molecule was needed. In this communication, a practical and scalable synthesis of FMCA, and its prodrug, is reported via ketone 1. The selective opening of the isopropylidene group of 2 led to compound 3. Protection of the allylic hydroxyl group of 3, followed by fluorination and deprotection, afforded the key intermediate 10, which was condensed with a Boc-protected adenine, followed by deprotection, furnished the target nucleoside FMCA (12) in high yield. Further coupling of phosphorochloridate of L-alanine isopropyl ester (13) with FMCA gave its phosphoramidate prodrug FMCAP (14) in good yield.
Prodrug compound and application ofprodrug compound in treatment of cancer
-
, (2021/03/06)
The present invention provides a compound indicated by a formula (I), pharmaceutically acceptable salts or esters thereof, a pharmaceutical composition of the compound, and application of the compoundand the pharmaceutical composition in the inhibition or regulation of the activity of tyrosine kinase and treating disease symptoms or symptoms including cancer mediated by tyrosine kinase.
Compound for treating viral infection and preparation method and application of compound
-
Paragraph 0131-0136; 0140-0142, (2021/08/07)
The invention provides a preparation for treating viral infection and pneumovirus subfamily viral infection, a method, a compound as shown in a formula (I) and a method and intermediate for synthesis of the compound as shown in the formula (I).