26163-03-1Relevant articles and documents
8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi
Azas, Nadine,Boudot, Clotilde,Bourgeade-Delmas, Sandra,Brossas, Jean-Yves,Castera-Ducros, Caroline,Corvaisier, Sophie,Courtioux, Bertrand,Destere, Alexandre,Fairlamb, Alan H.,Fersing, Cyril,Mazier, Dominique,Paoli-Lombardo, Romain,Paris, Luc,Pedron, Julien,Pinault, Emilie,Primas, Nicolas,Rathelot, Pascal,Seguy, Line,Since, Marc,Sournia-Saquet, Alix,Stigliani, Jean-Luc,Valentin, Alexis,Vanelle, Patrice,Verhaeghe, Pierre,Wyllie, Susan,Boutet-Robinet, élisa,Hutter, Sébastien,Malzert-Fréon, Aurélie
, (2020)
An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi (EC50 amastigotes = 1.2 μM) as benznidazole and fexinidazole. An in vitro comet assay showed that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (?0.68 V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility while maintaining good activity and low cytotoxicity when the hydroxyl group was at position beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life and a high albumin binding (98.5percent). Moreover, compound 19 was orally absorbed and was well tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in parasitized mouse models, looking for a novel antitrypanosomal lead compound.
Flexible on-site halogenation paired with hydrogenation using halide electrolysis
Shang, Xiao,Liu, Xuan,Sun, Yujie
supporting information, p. 2037 - 2043 (2021/03/26)
Direct electrochemical halogenation has appeared as an appealing approach in synthesizing organic halides in which inexpensive inorganic halide sources are employed and electrical power is the sole driving force. However, the intrinsic characteristics of direct electrochemical halogenation limit its reaction scope. Herein, we report an on-site halogenation strategy utilizing halogen gas produced from halide electrolysis while the halogenation reaction takes place in a reactor spatially isolated from the electrochemical cell. Such a flexible approach is able to successfully halogenate substrates bearing oxidatively labile functionalities, which are challenging for direct electrochemical halogenation. In addition, low-polar organic solvents, redox-active metal catalysts, and variable temperature conditions, inconvenient for direct electrochemical reactions, could be readily employed for our on-site halogenation. Hence, a wide range of substrates including arenes, heteroarenes, alkenes, alkynes, and ketones all exhibit excellent halogenation yields. Moreover, the simultaneously generated H2at the cathode during halide electrolysis can also be utilized for on-site hydrogenation. Such a strategy of paired halogenation/hydrogenation maximizes the atom economy and energy efficiency of halide electrolysis. Taking advantage of the on-site production of halogen and H2gases using portable halide electrolysis but not being suffered from electrolyte separation and restricted reaction conditions, our approach of flexible halogenation coupled with hydrogenation enables green and scalable synthesis of organic halides and value-added products.
Discovery of a Novel Highly Selective Histamine H4 Receptor Antagonist for the Treatment of Atopic Dermatitis
Ko, Kwangseok,Kim, Hye-Jung,Ho, Pil-Su,Lee, Soon Ok,Lee, Ji-Eun,Min, Cho-Rong,Kim, Yu Chul,Yoon, Ju-Han,Park, Eun-Jung,Kwon, Young-Jin,Yun, Jee-Hun,Yoon, Dong-Oh,Kim, Jung-Sook,Park, Woul-Seong,Oh, Seung-Su,Song, Yu-Mi,Cho, Woon-Ki,Morikawa, Kazumi,Lee, Kyoung-June,Park, Chan-Hee
supporting information, p. 2949 - 2961 (2018/04/23)
The histamine H4 receptor (H4R), a member of the G-protein coupled receptor family, has been considered as a potential therapeutic target for treating atopic dermatitis (AD). A large number of H4R antagonists have been disclosed, but no efficient agents controlling both pruritus and inflammation in AD have been developed yet. Here, we have discovered a novel class of orally available H4R antagonists showing strong anti-itching and anti-inflammation activity as well as excellent selectivity against off-targets. A pharmacophore-based virtual screening system constructed in-house successfully identified initial hit compound 9, and the subsequent homology model-guided optimization efficiently led us to discover pyrido[2,3-e]tetrazolo[1,5-a]pyrazine analogue 48 as a novel chemotype of a potent and highly selective H4R antagonist. Importantly, orally administered compound 48 exhibits remarkable efficacy on antipruritus and anti-inflammation with a favorable pharmacokinetic (PK) profile in several mouse models of AD. Thus, these data strongly suggest that our compound 48 is a promising clinical candidate for treatment of AD.