2503-46-0Relevant articles and documents
Molybdate Stabilized Magnesium‐Iron Hydrotalcite Materials: Potential Catalysts for Isoeugenol to Vanillin and Olefin Epoxidation
Neethu, P. P.,Sakthivel, A.,Sreenavya, A.
, (2021/08/03)
A series of molybdate-intercalated and stabilized magnesium‐iron hydrotalcite (HMFeMo) materials with different molybdate loadings were successfully prepared by an in-situ hydrothermal method. The prepared HMFeMo materials were systematically characterized using Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), Ultraviolet-visible spectroscopy, scanning electron microscopy, thermo-gravimetric analysis, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy (XPS) experiments. The XRD results demonstrated the successful intercalation of molybdate ions in the interlayer space of magnesium-iron hydrotalcite and the stabilization of the layered structure. In addition, the XPS spectra of the HMFeMo materials revealed the presence of molybdenum in a higher-valent oxidation state. The calcination of HMFeMo materials led to the formation of solid solution of mixed metal oxides. Both the as-prepared and calcined HMFeMo catalysts showed promising activity for the epoxidation of cyclooctene, as a model reaction. Furthermore, the performance of the as-prepared and calcined HMFeMo catalysts for the oxidation of a biomass model compound, namely isoeugenol to vanillin, was evaluated. The isoeugenol conversion over the as-prepared HMFeMo catalysts under solvent-free conditions and using tertiary-butyl hydroperoxide in decane as the oxidant was good. Moreover, the isoeugenol conversion and selectivity toward vanillin of HMFeMo0.1, with a molybdate loading of 0.1 mol %, were the highest (86.2% and 83.1%, respectively) of all HMFeMo catalysts in this study at 80 °C for 5 hr. HMFeMo0.1 presented the best catalytic activity for both the epoxidation of cyclooctene and oxidation of isoeugenol to vanillin, and its activity remained unchanged after several runs.
Structural features and antioxidant activities of Chinese quince (Chaenomeles sinensis) fruits lignin during auto-catalyzed ethanol organosolv pretreatment
Cheng, Xi-Chuang,Guo, Xin-Ran,Liu, Hua-Min,Liu, Yu-Lan,Qin, Zhao,Wang, Xue-De
, p. 4348 - 4358 (2020/09/22)
Chinese quince fruits (Chaenomeles sinensis) have an abundance of lignins with antioxidant activities. To facilitate the utilization of Chinese quince fruits, lignin was isolated from it by auto-catalyzed ethanol organosolv pretreatment. The effects of three processing conditions (temperature, time, and ethanol concentration) on yield, structural features and antioxidant activities of the auto-catalyzed ethanol organosolv lignin samples were assessed individually. Results showed the pretreatment temperature was the most significant factor; it affected the molecular weight, S/G ratio, number of β-O-4′ linkages, thermal stability, and antioxidant activities of lignin samples. According to the GPC analyses, the molecular weight of lignin samples had a negative correlation with pretreatment temperature. 2D-HSQC NMR and Py-GC/MS results revealed that the S/G ratios of lignin samples increased with temperature, while total phenolic hydroxyl content of lignin samples decreased. The structural characterization clearly indicated that the various pretreatment conditions affected the structures of organosolv lignin, which further resulted in differences in the antioxidant activities of the lignin samples. These results can be helpful for controlling and optimizing delignification during auto-catalyzed ethanol organosolv pretreatment, and they provide theoretical support for the potential applications of Chinese quince fruits lignin as a natural antioxidant in the food industry.
Stereoselective Synthesis of 1-Arylpropan-2-amines from Allylbenzenes through a Wacker-Tsuji Oxidation-Biotransamination Sequential Process
González-Martínez, Daniel,Gotor, Vicente,Gotor-Fernández, Vicente
, p. 2582 - 2593 (2019/05/15)
Herein, a sequential and selective chemoenzymatic approach is described involving the metal-catalysed Wacker-Tsuji oxidation of allylbenzenes followed by the amine transaminase-catalysed biotransamination of the resulting 1-arylpropan-2-ones. Thus, a series of nine optically active 1-arylpropan-2-amines were obtained with good to very high conversions (74–92%) and excellent selectivities (>99% enantiomeric excess) in aqueous medium. The Wacker-Tsuji reaction has been exhaustively optimised searching for compatible conditions with the biotransamination experiments, using palladium(II) complexes as catalysts and iron(III) salts as terminal oxidants in aqueous media. The compatibility of palladium/iron systems for the chemical oxidation with commercially available and made in house amine transaminases was analysed, finding ideal conditions for the development of a general and stereoselective cascade sequence. Depending on the selectivity displayed by selected amine transaminase, it was possible to produce both 1-arylpropan-2-amines enantiomers under mild reaction conditions, compounds that present therapeutic properties or can be employed as synthetic intermediates of chiral drugs from the amphetamine family. (Figure presented.).