19192-71-3Relevant articles and documents
Size and doping effects on the improvement of the low-temperature magnetic properties of magnetically aligned cobalt ferrite nanoparticles
Knobel, Marcelo,Moscoso-Londo?o, Oscar,Muraca, Diego,Rivas-Rojas, Patricia C.,Socolovsky, Leandro M.,Tancredi, Pablo
, (2021/11/01)
The macroscopic magnetic behavior of nanoparticulated systems is the result of several contributions, ranging from the intrinsic structural properties of the nanoparticles to their spatial arrangement within the material. Unravelling and understanding these influences is an important task to produce nano-systems with improved properties for specific technological applications. In this work we study how the magnetic behavior of a set of magnetically hard nanoparticles can be improved by the modification of the sample arrangement (either randomly or magnetically oriented) and the nature of the enclosing matrices. At first, we employed a hot-injection, continuous growth strategy to synthesize non-stoichiometric cobalt ferrite (CoxFe3?xO4) nanoparticles. We prepared five batches of hydrophobic, oleate-coated samples, with mean diameters of 8 nm, 12 nm, 16 nm and variable Co-to-Fe proportions. The structural characterization confirms that the nanoparticles have a spinel-type monocrystalline structure and that the Co and Fe ions are homogenously distributed within the system. The magnetic properties of the nanoparticles were measured by DC magnetometry, and we found that the strategy used in this work to create a system of magnetically oriented nanoparticles can lead to a significant remanence and coercive field enhancement at low temperatures when compared with randomly oriented and fixed systems. The modification of the magnetic properties was detected in the five batches of samples, but the strength of the enhancement depends on both size and composition of the nanoparticles. Indeed, for the “hardest” samples the coercive field of the magnetically oriented systems reached values of around 30 kOe (3 T), which represents a 50% increase regarding the randomly oriented system and are among the highest reported to date for a set of Fe and Co oxide nanoparticles.
One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction
Al-Mamun, Mohammad,Wang, Yun,Liu, Porun,Zhong, Yu Lin,Yin, Huajie,Su, Xintai,Zhang, Haimin,Yang, Huagui,Wang, Dan,Tang, Zhiyong,Zhao, Huijun
, p. 18314 - 18321 (2016/12/09)
Cobalt pentlandite (Co9S8) has recently emerged as an alternative non-noble metal based electrocatalyst for the oxygen evolution reaction (OER). Co9S8 is known for its intrinsic structural and electronic properties favorable for electrocatalytic applications, but the synthesis of stoichiometrically optimal Co9S8 electrocatalysts remains challenging. Herein, a facile one-step solid phase calcination approach is presented in which Co9S8 nanoparticles (NPs) were concurrently synthesised on carbon nanosheets (CNSs). The reaction mechanism for this synthesis was systematically investigated using TG/DSC-MS analysis. Relative to other cobalt chalcogenide electrocatalysts, the as-prepared thermally stable nanocomposite (Co9S8/CNS) has better electrocatalytic performance for the OER in alkaline electrolytes, exhibiting a smaller overpotential of 294 mV at a current density of 10 mA cm2 with a Tafel slope of 50.7 mV dec1. Furthermore, a minimum overpotential of 267 mV with a Tafel slope of 48.2 mV dec1 could be achieved using highly conducting multi-walled carbon nanotubes (MWCNTs) as a conducting filler in the nanocomposites.
Nanoparticle-sulphur "inverse vulcanisation" polymer composites
Bear, Joseph C.,Peveler, William J.,McNaughter, Paul D.,Parkin, Ivan P.,O'Brien, Paul,Dunnill, Charles W.
supporting information, p. 10467 - 10470 (2015/06/25)
Composites of sulphur polymers with nanoparticles such as PbS, with tunable optical properties are reported. A hydrothermal route incorporating pre-formed nanoparticles was used, and their physical and chemical properties evaluated by transmission and scanning electron microscopy, thermogravimetric and elemental analyses. These polymers are easily synthesised from an industrial waste material, elemental sulphur, can be cast into virtually any form and as such represent a new class of materials designed for a responsible energy future.