18448-47-0Relevant articles and documents
Synthesis of α,β-unsaturated ketones and esters using polymer-supported selenium bromide
Sheng, Shou-Ri,Liu, Xiao-Ling,Wang, Xing-Cong
, p. 279 - 281 (2003)
Treatment of the polymer-supported α-phenylseleno ketones and esters prepared from polymer-supported selenium bromide with ketone and ester enolates with hydrogen peroxide afford α,β-unsaturated ketones and esters in good yields and high purities.
-
Overberger,Kabasakalian
, p. 1124,1126 (1956)
-
Electrochemically driven desaturation of carbonyl compounds
Gnaim, Samer,Takahira, Yusuke,Wilke, Henrik R.,Yao, Zhen,Li, Jinjun,Delbrayelle, Dominique,Echeverria, Pierre-Georges,Vantourout, Julien C.,Baran, Phil S.
, p. 367 - 372 (2021/03/31)
Electrochemical techniques have long been heralded for their innate sustainability as efficient methods to achieve redox reactions. Carbonyl desaturation, as a fundamental organic oxidation, is an oft-employed transformation to unlock adjacent reactivity through the formal removal of two hydrogen atoms. To date, the most reliable methods to achieve this seemingly trivial reaction rely on transition metals (Pd or Cu) or stoichiometric reagents based on I, Br, Se or S. Here we report an operationally simple pathway to access such structures from enol silanes and phosphates using electrons as the primary reagent. This electrochemically driven desaturation exhibits a broad scope across an array of carbonyl derivatives, is easily scalable (1–100 g) and can be predictably implemented into synthetic pathways using experimentally or computationally derived NMR shifts. Systematic comparisons to state-of-the-art techniques reveal that this method can uniquely desaturate a wide array of carbonyl groups. Mechanistic interrogation suggests a radical-based reaction pathway. [Figure not available: see fulltext.]
Photoredox/Cobalt Dual-Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight
Cartwright, Kaitie C.,Joseph, Ebbin,Comadoll, Chelsea G.,Tunge, Jon A.
, p. 12454 - 12471 (2020/09/09)
Recently, dual-catalytic strategies towards the decarboxylative elimination of carboxylic acids have gained attention. Our lab previously reported a photoredox/cobaloxime dual catalytic method that allows the synthesis of enamides and enecarbamates directly from N-acyl amino acids and avoids the use of any stoichiometric reagents. Further development, detailed herein, has improved upon this transformation's utility and further experimentation has provided new insights into the reaction mechanism. These new developments and insights are anticipated to aid in the expansion of photoredox/cobalt dual-catalytic systems.
Cyanide-Free One-Pot Synthesis of Methacrylic Esters from Acetone
Koyama, Minoru,Kawakami, Takafumi,Okazoe, Takashi,Nozaki, Kyoko
, p. 10913 - 10917 (2019/08/02)
Methacrylic esters, represented by methyl methacrylate (MMA), are widely used as commodity chemicals. Here, the one-pot synthesis of methacrylic esters from acetone, a haloform and alcohols in the presence of an organic base is described. Using DBU as the organic base for the reaction of acetone, chloroform and methanol in acetonitrile afforded MMA in 66 % yield. When the solvent was replaced by benzonitrile, the product MMA was successfully purified by distillation. Applicability of this process to various alcohols was also investigated to show ethyl, phenyl, CF3CH2, and n-C6F13CH2CH2 esters were obtained in moderate yields. The use of bromoform instead of chloroform resulted in the improvement of the yield, for example, methyl and n-C6F13CH2CH2 esters up to 81 and 70 %, respectively. The reaction with deuterated starting materials acetone-d6 and MeOH-d4, with DBU in acetonitrile afforded deuterated MMA (MMA-d8) in 70 % yield.