1654-86-0Relevant articles and documents
Electrochemical alkyl transfer reaction from trialkylboranes to polyhalo compounds
Condon, Sylvie,Zou, Chunhai,Nédélec, Jean-Yves
, p. 3245 - 3250 (2006)
Reduction of decyl dichloro- and trichloroacetate, under mild electrolysis conditions by using the sacrificial anode process, affords α-chlorocarbanions which readily react with trialkylboranes to give alkylated products in a one step reaction.
One-step solvent-free aerobic oxidation of aliphatic alcohols to esters using a tandem Sc-Ru?MOF catalyst
Feng, Tingkai,Li, Conger,Li, Tao,Zhang, Songwei
supporting information, p. 1474 - 1480 (2022/03/08)
Esters are an important class of chemicals in industry. Traditionally, ester production is a multi-step process involving the use of corrosive acids or acid derivatives (e.g. acid chloride, anhydride, etc.). Therefore, the development of a green synthetic protocol is highly desirable. This work reports the development of a metal-organic framework (MOF) supported tandem catalyst that can achieve direct alcohol to ester conversion (DAEC) using oxygen as the sole oxidizing agent under strictly solvent-free conditions. By incorporating Ru nanoparticles (NPs) along with a homogeneous Lewis acid catalyst, scandium triflate, into the nanocavities of a Zr MOF, MOF-808, the compound catalyst, Sc-Ru?MOF-808, can achieve aliphatic alcohol conversion up to 92% with ester selectivity up to 91%. A mechanistic study reveals a unique “via acetal” pathway in which the alcohol is first oxidized on Ru NPs and rapidly converted to an acetal on Sc(iii) sites. Then, the acetal slowly decomposes to release an aldehyde in a controlled manner for subsequent oxidation and esterification to the ester product. To the best of our knowledge, this is the first example of DAEC of aliphatic alcohols under solvent-free conditions with high conversion and ester selectivity.
Aerobic Self-Esterification of Alcohols Assisted by Mesoporous Manganese and Cobalt Oxide
Moharreri, Ehsan,Biswas, Sourav,Deljoo, Bahareh,Kriz, David,Lim, Seyoung,Elliott, Sarah,Dissanayake, Shanka,Dabaghian, Marina,Aindow, Mark,Suib, Steven L.
, p. 3413 - 3422 (2019/08/01)
Aerobic self-esterification of primary alcohols catalyzed by mesoporous metal oxides (manganese and cobalt oxides) is reported under base and solvent free conditions. For a range of aliphatic alcohols, up to 90 % conversions to esters was achieved. The catalytic reaction is likewise applicable to neat aldehydes as substrates with yields of up to 86 %. High pressure batch reaction for ethanol to ethyl acetate led to 22 % yield. Isotope labeling studies indicated decarboxylation on the catalyst surface. Mechanistic and kinetic experiments implicate oxygen rebound and α-carbon removal as intermediate steps. Mesoporous cobalt oxide showed about 20 % higher catalytic activity compared to mesoporous manganese oxide.
Cobalt-Catalyzed Acceptorless Dehydrogenative Coupling of Primary Alcohols to Esters
Paudel, Keshav,Pandey, Bedraj,Xu, Shi,Taylor, Daniela K.,Tyer, David L.,Torres, Claudia Lopez,Gallagher, Sky,Kong, Lin,Ding, Keying
supporting information, p. 4478 - 4481 (2018/08/09)
A novel catalytic system with a tripodal cobalt complex is developed for efficiently converting primary alcohols to esters. KOtBu is found essential to the transformation. A preliminary mechanistic study suggests a plausible reaction route that involves an initial Co-catalyzed dehydrogenation of alcohol to aldehyde, followed by a Tishchenko-type pathway to ester mediated by KOtBu.