1444000-02-5Relevant articles and documents
In vitro biosynthesis, isolation, and identification of predominant metabolites of 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7- dimethoxyquinazolin-4(3H)-one (RVX-208)
Khmelnitsky, Yuri L.,Mozhaev, Vadim V.,Cotterill, Ian C.,Michels, Peter C.,Boudjabi, Sihem,Khlebnikov, Vladimir,Madhava Reddy,Wagner, Gregory S.,Hansen, Henrik C.
, p. 121 - 128 (2013/07/27)
The structures of the two predominant metabolites (M4 and M5) of RVX-208, observed both in in vitro human and animal liver microsomal incubations, as well as in plasma from animal in vivo studies, were determined. A panel of biocatalytic systems was tested to identify biocatalysts suitable for milligram scale production of metabolite M4 from RVX-208. Rabbit liver S9 fraction was selected as the most suitable system, primarily based on pragmatic metrics such as catalyst cost and estimated yield of M4 (~55%). Glucuronidation of RVX-208 catalyzed by rabbit liver S9 fraction was optimized to produce M4 in amounts sufficient for structural characterization. Structural studies using LC/MS/MS analysis and 1H NMR spectroscopy showed the formation of a glycosidic bond between the primary hydroxyl group of RVX-208 and glucuronic acid. NMR results suggested that the glycosidic bond has the β-anomeric configuration. A synthetic sample of M4 confirmed the proposed structure. Metabolite M5, hypothesized to be the carboxylate of RVX-208, was prepared using human liver microsomes, purified by HPLC, and characterized by LC/MS/MS and 1H NMR. The structure was confirmed by comparison to a synthetic sample. Both samples confirmed M5 as a product of oxidation of primary hydroxyl group of RVX-208 to carboxylic acid.