Welcome to LookChem.com Sign In|Join Free

CAS

  • or

13688-75-0

Post Buying Request

13688-75-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

13688-75-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 13688-75-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,3,6,8 and 8 respectively; the second part has 2 digits, 7 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 13688-75:
(7*1)+(6*3)+(5*6)+(4*8)+(3*8)+(2*7)+(1*5)=130
130 % 10 = 0
So 13688-75-0 is a valid CAS Registry Number.

13688-75-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name trichloro-(3-methylphenyl)silane

1.2 Other means of identification

Product number -
Other names Trichlor-m-tolyl-silan

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:13688-75-0 SDS

13688-75-0Relevant articles and documents

Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes

Li, Yanfei,Wang, Ying,Xiong, Tao,Zhang, Ge,Zhang, Qian

supporting information, p. 11927 - 11931 (2020/05/22)

The catalytic asymmetric creation of silanes with silicon stereocenters is a long-sought but underdeveloped topic, and only a handful of examples have been reported. Moreover, the construction of chiral silanes containing (more than) two stereocenters is a more arduous task and remains unexploited. We herein report an unprecedented copper-catalyzed desymmetrizing protoboration of divinyl-substituted silanes with bis(pinacolato)diboron (B2pin2). This method enables the facile preparation of an array of enantiomerically enriched boronate-substituted organosilanes bearing contiguous silicon and carbon stereocenters with exclusive regioselectivity and generally excellent diastereo- and enantioselectivity.

Catalytic and stoichiometric reactivity of β-silylamido agostic complex of Mo: Intermediacy of a silanimine complex and applications to multicomponent coupling

Khalimon, Andrey Y.,Simionescu, Razvan,Nikonov, Georgii I.

experimental part, p. 7033 - 7053 (2011/06/25)

The reaction of complex (ArN=)2Mo(PMe3)3 (Ar = 2,6-diisopropylphenyl) with PhSiH3 gives the β-agostic NSi-H ...Msilyamido complex (ArNd)Mo(SiH2Ph) (PMe3)- (η3-ArN-SiHPh-H) (3) as the first product. 3 decomposes in the mother liquor to a mixture of hydride compounds, including complex {η3-SiH(Ph)-N(Ar)-SiHPh-H ... }MoH 3(PMe3)3 characterized by NMR. Compound 3 was obtained on preparative scale by reacting (ArN=)2Mo(PMe 3)3 with 2 equiv of PhSiH3 under N2 purging and characterized by multinuclear NMR, IR, and X-ray diffraction. Analogous reaction of (Ar′N=)2Mo(PMe3)3 (Ar′ = 2,6-dimethylphenyl) with PhSiH3 affords the nonagostic silylamido derivative (Ar′N=)Mo(SiH2Ph)(PMe3) 2(NAr′{SiH2Ph}) (5) as the first product. 5 decomposes in the mother liquor to a mixture of {η3-PhHSi- N(Ar′)-SiHPh-H ... }MoH3(PMe3)3, (Ar′N=)Mo(H)2(PMe3)2(η2- Ar′N=SiHPh), and other hydride species. Catalytic and stoichiometric reactivity of 3 was studied. Complex 3 undergoes exchange with its minor diastereomer 3′ by an agostic bond-opening/closing mechanism. It also exchanges the classical silyl group with free silane by an associative mechanism which most likely includes dissociation of the Si-H agostic bond followed by the rate-determining silane σ-bond metathesis. However, labeling experiments suggest the possibility of an alternative (minor) pathway in this exchange including a silanimine intermediate. 3 was found to catalyze dehydrogenative coupling of silane, hydrosilylation of carbonyls and nitriles, and dehydrogenative silylation of alcohols and amines. Stoichiometric reactions of 3 with nitriles proceed via intermediate formation of η2- adducts (ArN=)Mo(PMe3)(η2-ArN=SiHPh) (η2-NtCR), followed by an unusual Si-N coupling to give (ArN=)Mo(PMe3)(κ2-NAr-SiHPh-C(R)=N-). Reactions of 3 with carbonyls lead to η2-carbonyl adducts (ArN=) 2Mo(OdCRR0)(PMe3) which were independently prepared by reactions of (ArN=)2Mo(PMe3)3 with the corresponding carbonyl OdCRR′. In the case of reaction with benzaldehyde, the silanimine adduct (ArN=)Mo(PMe3)(η2-ArN=SiHPh)- (η2-O=CHPh) was observed by NMR. Reactions of complex 3 with olefins lead to products of Siag-C coupling, (ArN=)Mo(Et)(PMe 3)(η3-NAr-SiHPh-CH=CH2) (17) and (ArN=)Mo(H)(PMe3)(η3-NAr-SiHPh-CH=CHPh), for ethylene and styrene, respectively. The hydride complex (ArN=)Mo(H)(PMe 3)(η3-NAr-SiHPh-CH=CH2) was obtained from 17 by hydrogenation and reaction with PhSiH3. Mechanistic studies of the latter process revealed an unusual dependence of the rate constant on phosphine concentration, which was explained by competition of two reaction pathways. Reaction of 17 with PhSiH3 in the presence of BPh3 leads to agostic complex (ArN=)Mo(SiH2Ph)(η3-NAr-Si(Et)Ph-H) (η2-CH2=CH2) (24) having the Et substituent at the agostic silicon. Mechanistic studies show that the Et group stems from hydrogenation of the vinyl substituent by silane. Reaction of 24 with PMe 3 gives the agostic complex (ArN=)Mo(SiH2Ph)(PMe 3)(η3-NAr-Si(Et)Ph-H), which slowly reacts with PhSiH3 to furnish silylamide 3 and the hydrosilylation product PhEtSiH2. A mechanism involving silane attack on the imido ligand was proposed to explain this transformation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 13688-75-0