Welcome to LookChem.com Sign In|Join Free

CAS

  • or

13519-74-9

Post Buying Request

13519-74-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

13519-74-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 13519-74-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,3,5,1 and 9 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 13519-74:
(7*1)+(6*3)+(5*5)+(4*1)+(3*9)+(2*7)+(1*4)=99
99 % 10 = 9
So 13519-74-9 is a valid CAS Registry Number.

13519-74-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Chloro-N-ethylaniline

1.2 Other means of identification

Product number -
Other names Benzenamine, 2-chloro-N-ethyl-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:13519-74-9 SDS

13519-74-9Relevant articles and documents

Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy

Zhao, Chenxi,Tang, Chu,Li, Changhao,Ning, Wentao,Hu, Zhiye,Xin, Lilan,Zhou, Hai-Bing,Huang, Jian

, (2021/05/10)

Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.

Continuous-Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex

?tv?s, Sándor B.,Kappe, C. Oliver

, p. 1800 - 1807 (2020/02/27)

Reductions of amides and esters are of critical importance in synthetic chemistry, and there are numerous protocols for executing these transformations employing traditional batch conditions. Notably, strategies based on flow chemistry, especially for amide reductions, are much less explored. Herein, a simple process was developed in which neat borane dimethylsulfide complex (BH3?DMS) was used to reduce various esters and amides under continuous-flow conditions. Taking advantage of the solvent-free nature of the commercially available borane reagent, high substrate concentrations were realized, allowing outstanding productivity and a significant reduction in E-factors. In addition, with carefully optimized short residence times, the corresponding alcohols and amines were obtained in high selectivity and high yields. The synthetic utility of the inexpensive and easily implemented flow protocol was further corroborated by multigram-scale syntheses of pharmaceutically relevant products. Owing to its beneficial features, including low solvent and reducing agent consumption, high selectivity, simplicity, and inherent scalability, the present process demonstrates fewer environmental concerns than most typical batch reductions using metal hydrides as reducing agents.

B(C6F5)3-Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane

Pan, Yixiao,Luo, Zhenli,Han, Jiahong,Xu, Xin,Chen, Changjun,Zhao, Haoqiang,Xu, Lijin,Fan, Qinghua,Xiao, Jianliang

supporting information, p. 2301 - 2308 (2019/01/30)

The first B(C6F5)3-catalyzed deoxygenative reduction of amides into the corresponding amines with readily accessible and stable ammonia borane (AB) as a reducing agent under mild reaction conditions is reported. This metal-free protocol provides facile access to a wide range of structurally diverse amine products in good to excellent yields, and various functional groups including those that are reduction-sensitive were well tolerated. This new method is also applicable to chiral amide substrates without erosion of the enantiomeric purity. The role of BF3 ? OEt2 co-catalyst in this reaction is to activate the amide carbonyl group via the in situ formation of an amide-boron adduct. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 13519-74-9