13472-56-5Relevant articles and documents
-
Abramovitch,Newman
, p. 2690,2694 (1974)
-
Simple synthetic process of 6-methoxypyridine-3-formaldehyde
-
Paragraph 0033-0037; 0051-0054, (2020/03/25)
The invention relates to a synthesis process of 6-methoxypyridine-3-formaldehyde, which comprises the following steps: 1, reacting 6-bromo-3-methylpyridine with sodium methylate under the condition ofa dry protic solvent to obtain 6-methoxy-3-methylpyridine; 2, carrying out bromination reaction on the 6-methoxy-3-methylpyridine obtained in the step 1 with a bromination reagent in an aprotic solvent under the action of a catalyst to obtain 5-(dibromomethyl)-2-methoxypyridine; and 3, carrying out a hydrolysis reaction on the 5-(dibromomethyl)-2-methoxypyridine prepared in the step 2 with an alkali in a mixed solvent of an aprotic solvent and water to prepare 6-methoxypyridine-3-formaldehyde. According to the invention, 6-bromo-3-methylpyridine is used as a main raw material, and is subjected to sodium methylate substitution, bromination and alkali metal hydroxide hydrolysis, such that a target compound is obtained. The method has the advantages of simple and accessible raw materials ineach step, simple process operation and mild reaction conditions, and is suitable for industrial amplification.
Method for preparing alkyl ethers and aryl ethers
-
Page/Page column 4, (2008/06/13)
Method for preparing compounds of the formula (III) by reacting compounds of the formula (II) with a) an alcoholate or b) an alcohol R1-OH and a base in the presence of a Cu-containing catalyst and of a ligand, where X1-5 are independently of one another either carbon or nitrogen, or in each case two adjacent X1R1, with i=1?6, linked by a formal double bond together O, S, NRH or Nrl. The ligands preferably employed are acyclic and/or cyclic oligo- and polyglycols, oligo- and polyamides or oligo- and polyamine glycols of the general formula (IV) k is an integer >0 and n is an integer >1; X and Y are independently of one another O, NH or NR1.
Dynamics of bond breaking in ion radicals. Mechanisms and reactivity in the reductive cleavage of carbon-fluorine bonds of fluoromethylarenes
Andrieux, Claude P.,Combellas, Catherine,Kanoufi, Fredéric,Savéant, Jean-Michel,Thiébault, André
, p. 9527 - 9540 (2007/10/03)
The reductive cleavage mechanism and reactivity of the carbon-fluorine bonds in fluoromethylarenes are investigated, in liquid ammonia and in DMF, by means of cyclic voltammetry and/or redox catalysis as a function of the number of fluorine atoms and of the structure of the aryl moiety. The reduction of the trifluoro compounds, eventually leading to complete defluorination, involves the di- and monofluoro derivatives as intermediates. Carbenes do not transpire along the reaction pathway. Application of the intramolecular dissociative electron transfer model allows the quantitative rationalization, in terms of driving force and intrinsic barrier, of the variation of the cleavage reactivity of the primary anion radical with the number of fluorine atoms and of the structure of the aryl moiety as well as with the solvating properties of the medium. When, related to the structural factors thus uncovered, the primary anion radical generates the di- and monofluoro intermediates far from the electrode surface, their reduction occurs homogeneously giving rise to an apparently direct six-electron process according to an internal redox catalysis mechanism. Conversely, with rapid cleavages, the reduction of the di- and monofluoro intermediates takes place at the electrode surface and the stepwise expulsion of the fluorides ions transpire in the cyclic voltammetric patterns.