13027-88-8Relevant articles and documents
Mechanistic investigations and secondary coordination sphere effects in the hydration of nitriles with [Ru(η6-arene)Cl2PR 3] complexes
Knapp, Spring Melody M.,Sherbow, Tobias J.,Yelle, Robert B.,Zakharov, Lev N.,Juliette, J. Jerrick,Tyler, David R.
, p. 824 - 834 (2013)
The mechanism of the nitrile-to-amide hydration reaction using [Ru(η6-arene)Cl2(PR3)] complexes as catalysts was investigated (η6-arene = C6H 6, p-cymene, C6Me6; R = NMe2, OMe, OEt, Et, iPr). Experiments showed that the mechanism involves the following general sequence of reactions: substitution of a chloride ligand by the nitrile substrate, intermolecular nucleophilic attack by water to form an amidate intermediate, and dissociation of the resulting amide. The effects of secondary coordination sphere interactions on the rates and yields of the hydration reaction were investigated. Ligands that are capable of acting as hydrogen bond acceptors with the entering water molecule result in faster rates and higher yields than non-hydrogen-bonding ligands. The faster rates are attributable to the H-bonding-facilitated deprotonation of the water as the oxygen of the water bonds to the coordinated nitrile. DFT calculations on the proposed H-bonding intermediates support this interpretation. Most homogeneous catalysts will not hydrate cyanohydrins because of the equilibrium amounts of cyanide that are present in solutions of cyanohydrins; the cyanide poisons the catalyst. Because of its increased catalytic reactivity due to secondary coordination sphere effects, the [Ru(η6-arene)Cl2(P(NMe2) 3)] catalyst gives significant yields of cyanohydrin hydration products with glycolonitrile, lactonitrile, acetone cyanohydrin, and mandelonitrile. A Taft plot showed that an increase in the steric bulk of the nitrile results in a decrease in the hydration rate, and a Hammett plot showed that electron-withdrawing groups facilitate nitrile hydration. The decrease in rate as the size of the cyanohydrin increases is likely due to both increased steric bulk and to the addition of electron-donating groups on the nitrile. The [Ru(η6-arene)Cl2(PR3)] catalysts are initially less susceptible to cyanide poisoning than other homogeneous nitrile hydration catalysts because [Ru(η6-p-cymene)(CN)(Cl)(P(NMe 2)3)] forms in the presence of cyanide. The electron-withdrawing cyanide ligand facilitates nucleophilic attack of water on a coordinated nitrile in this molecule.
Hydration of Cyanohydrins by Highly Active Cationic Pt Catalysts: Mechanism and Scope
Li, Chengcheng,Chang, Xiao-Yong,Huo, Luqiong,Tan, Haibo,Xing, Xiangyou,Xu, Chen
, p. 8716 - 8726 (2021/07/26)
Cyanohydrins (α-hydroxy nitriles) are a special type of nitriles that readily decompose into hydrogen cyanide (HCN) and the corresponding carbonyl compounds. Hydration of cyanohydrins that are readily available through cyanation of aldehydes and ketones provides the most straightforward route to valuable α-hydroxyamides. However, due to low stability of cyanohydrins and deactivation of the catalysts by the released HCN, catalytic direct hydration of cyanohydrins still remains largely unsolved. As a general trend, cyanohydrins containing bulkier substituents, such as α,α-diaryl cyanohydrins, degrade more quickly and thus are more difficult to be hydrated. Here, we report development of cationic platinum catalysts that exhibit high reactivity for hydration of various cyanohydrins. Detailed mechanistic investigations for hydration of nitriles by (PμP)Pt(PR2OH)X(OTf) reveal a catalytic cycle involving the formation of a five-membered metallacyclic intermediate and subsequent hydrolysis via attacking on the phosphorus of the secondary phosphine oxide (PR2OH) ligand by H2O. We discovered that Pt catalyst A bearing the electron-rich, appropriately small-bite-angle bisphosphine ligand provides super reactivity for hydration of cyanohydrins. The hydration reactions catalyzed by A proceed at ambient temperatures and occur with a wide variety of cyanohydrins, including the most difficult α,α-diaryl cyanohydrins, with good turnover numbers.
Catalytic Transfer Hydration of Cyanohydrins to α-Hydroxyamides
Kanda, Tomoya,Naraoka, Asuka,Naka, Hiroshi
supporting information, p. 825 - 830 (2019/01/14)
We report the palladium(II)-catalyzed transfer hydration of cyanohydrins to α-hydroxyamides by using carboxamides as water donors. This method enables selective hydration of various aldehyde- and ketone-derived cyanohydrins to afford α-mono- and α,α-disubstituted-α-hydroxyamides, respectively, under mild conditions (50 °C, 10 min). The direct conversion of fenofibrate, a drug bearing a benzophenone moiety, into a functionalized α,α-diaryl-α-hydroxyamide was achieved by means of a hydrocyanation-transfer hydration sequence. Preliminary kinetic studies and the synthesis of a site-specifically 18O-labeled α-hydroxyamide demonstrated the carbonyl oxygen transfer from the carboxamide reagent into the α-hydroxyamide product.
METHOD FOR PRODUCING A-HYDROXYISOBUTYRIC ACID AMIDE AND REACTOR
-
Paragraph 0151; 0152, (2016/06/13)
The present invention provides a method for producing α-hydroxyisobutyric acid amide by hydration of acetone cyanohydrin under the presence of a catalyst composed mainly of manganese oxide using a reactor in which at least two reaction regions are connected in series, the method being characterized by comprising: a step (B) of cyclically supplying at least a portion of a reaction liquid withdrawn from at least one reaction region to a first reaction region (I) in the reactor; and a step (b1) of further cyclically supplying at least a portion of the reaction liquid withdrawn from at least one reaction region to at least one reaction region other than the first reaction region. The method is also characterized in that an oxidizing agent is supplied to at least one reaction region in the reactor.