113-21-3Relevant articles and documents
Identification of 2, 3-dihydrodipicolinate as the product of the dihydrodipicolinate synthase reaction from Escherichia coli
Karsten, William E.,Nimmo, Susan A.,Liu, Jianguo,Chooback, Lilian
, p. 50 - 62 (2018)
Dihydrodipicolinate synthase (DHDPS) catalyzes the first step in the pathway for the biosynthesis of L-lysine in most bacteria and plants. The substrates for the enzyme are pyruvate and L-aspartate-β-semialdehyde (ASA). The product of the reaction was originally proposed to be 2,3-dihydrodipicolinate (DHDP), but has now generally been assumed to be (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate (HTPA). ASA is unstable at high pH and it is proposed that ASA reacts with itself. At high pH ASA also reacts with Tris buffer and both reactions are largely reversible at low pH. It is proposed that the basic un-protonated form of the amine of Tris or the α-amine of ASA reacts with the aldehyde functional group of ASA to generate an imine product. Proton NMR spectra of ASA done at different pH values shows new NMR peaks at high pH, but not at low pH, confirming the presence of reaction products for ASA at high pH. The enzymatic product of the DHDPS reaction was examined at low pH by proton NMR starting with either 3 h-pyruvate or 3 d-pyruvate and identical NMR spectra were obtained with four new NMR peaks observed at 1.5, 2.3, 3.9 and 4.1 ppm in both cases. The NMR results were most consistent with DHDP as the reaction product. The UV-spectral studies of the DHDPS reaction shows the formation of an initial product with a broad spectral peak at 254 nM. The DHDPS reaction product was further examined by reduction of the enzymatic reaction components with borohydride followed by GC-MS analysis of the mixture. Three peaks were found at 88, 119 and 169 m/z, consistent with pyruvate, homoserine (reduction product of ASA), and the reduction product of DHDP (1,2,3,6-tetrahydropyridine-2,6-dicarboxylate). There was no indication for a peak associated with the reduced form of HTPA.
Modelling of the periodic anaerobic baffled reactor (PABR) based on the retaining factor concept
Skiadas,Gavala,Lyberatos
, p. 3725 - 3736 (2000)
The fact that the active biomass is continuously removed from the continuously stirred anaerobic digesters, leading to long retention times, has been overcome in a number of high rate systems based on immobilization of the active biomass, such as the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and the Anaerobic Baffled Reactor (ABR). A kinetic model of glucose consumption, which was developed based on a batch kinetic experiment, was used for the development of a dynamic model for the prediction of the behaviour of the recently developed flexible reactor called the Periodic Anaerobic Baffled Reactor (PABR). The PABR may be operated as a UASBR, an ABR or at an intermediate mode. The key assumption of the model is that the hydraulic behaviour of a PABR is equivalent with the behaviour of CSTRs in series as concerning the dissolved matter, whereas the biomass is allowed to be retained in the PABR through a retention factor accounting for precipitation. The model adequately predicted the experimental behaviour of a glucose fed PABR. The model was subsequently used to examine the behaviour of the PABR as a function of operating conditions, both for constant and varying loading rates. It was shown that for different cases, the reactor should best be operated as a UASBR or as an ABR. The fact that the active biomass is continuously removed from the continuously stirred anaerobic digesters, leading to long retention times, has been overcome in a number of high rate systems based on immobilisation of the active biomass, such as the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and the Anaerobic Baffled Reactor (ABR). A kinetic model of glucose consumption, which was developed based on a batch kinetic experiment, was used for the development of a dynamic model for the prediction of the behaviour of the recently developed flexible reactor called the Periodic Anaerobic Baffled Reactor (PABR) [(1998) Wat. Sci. Technol. 38(8-9), 401- 408]. The PABR may be operated as a UASBR, an ABR or at an intermediate mode. The key assumption of the model is that the hydraulic behaviour of a PABR is equivalent with the behaviour of CSTRs in series as concerning the dissolved matter, whereas the biomass is allowed to be retained in the PABR through a retention factor accounting for precipitation. The model adequately predicted the experimental behaviour of a glucose fed PABR. The model was subsequently used to examine the behaviour of the PABR as a function of operating conditions, both for constant and varying loading rates. It was shown that for different cases, the reactor should best be operated as a UASBR or as an ABR. (C) 2000 Elsevier Science Ltd.
Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts
Ainembabazi, Diana,Finn, Matthew,Ridenour, James,Voutchkova-Kostal, Adelina,Wang, Kai
, p. 6093 - 6104 (2020)
The transfer hydrogenation of CO2and carbonates from biomass-derived alcohols, such as glycerol, to afford formic and lactic acid is a highly attractive path to valorizing two waste streams, and is significantly more thermodynamically favorable than direct carbonate hydrogenation. Expanding on our seminal report of the first homogeneous catalyst for this process, here we show that thermally-robust and water-soluble Ir(i) and Ir(iii) N-heterocyclic carbene (NHC) complexes with sulfonate-functionalized wingtips are highly prolific and robust catalysts for carbonate transfer hydrogenation from glycerol, requiring no additives in aqueous media. The most prolific catalyst of the nine examined, [Ir(NHC-Ph-SO3?)2CO2]Na (cat7), effectively facilitates the reaction at low catalyst loading (10 ppm) at 150 °C using microwave or conventional heating. The cation of the carbonate salt significantly impacts catalytic activity, with highest activity observed with Cs2CO3(27?850 and 13?350 TONs for lactate and formate respectively in 6 hours, compared to 15?400 and 8120 with K2CO3). Catalytic amounts of Cs+were found to significantly enhance activity with K2CO3. Catalyst7is even more prolific with conventional heating under a positive N2pressure, reaching TOFs of >3000 h?1and >2100 h?1respectively for lactate and formate with K2CO3. The high activity of this catalyst compared to non-sulfonated and cyclooctadiene analogs is attributed to a combination of catalyst solubility in aqueous media and presence of π-acceptor carbonyl ligands. A catalytic mechanism is proposed for7involving O-H oxidative addition of glycerol, β-hydride elimination, bicarbonate dehydroxylation, insertion and reductive elimination.
Room temperature, near-quantitative conversion of glucose into formic acid
Wang, Can,Chen, Xi,Qi, Man,Wu, Jianeng,G?zaydin, G?kalp,Yan, Ning,Zhong, Heng,Jin, Fangming
, p. 6089 - 6096 (2019)
Herein, a facile and efficient method was developed to selectively transform glucose into formic acid at room temperature. After parameter optimization, formic acid was obtained in an unprecedented 91.3% yield with a reaction time of 8 h in lithium hydroxide aqueous solution with hydrogen peroxide as the oxidant. The synergistic effects of the base and the oxidant promoted the glucose conversion at room temperature and enhanced the selectivity towards FA. Besides, the employed mild conditions have suppressed FA decomposition that often occurred under harsh conditions, which further improved the FA selectivity. A series of model compound tests were conducted to probe the possible intermediates based on which a plausible reaction pathway was proposed. In addition, the process is applicable to various carbohydrates such as cellobiose, starch, xylan, etc. This work opens up a simple, mild but effective method to produce FA from renewable biomass resources, which would remarkably alleviate the energy consumption, capital costs, handling risks, etc.