1111-74-6Relevant articles and documents
Pierce
, p. 498,505 (1961)
Hase et al.
, p. 3454,3455, 3456, 3458 (1973)
Nelson et al.
, p. 2662,2663 (1963)
Groschwitz et al.
, p. 421,422 (1967)
Mechanism of the Gas-Phase Thermolysis of Monomethylsilane
Neudorfl, P. S.,Lown, E. M.,Safarik, I.,Jodhan, A.,Strausz, O. P.
, p. 5780 - 5789 (1987)
The thermolysis of monomethylsilane (MMS) has been studied as a function of pressure (33-400 Torr), temperature (340-440 deg C), and conversion.Under conditions of very low (tipically, 0.5percent) conversion and in a carefully seasoned vessel the major products are H2 and dimethyldisilane (DMDS).Dimethylsilane (DMS) comprises ca. 5percent of the major products.MMS-d3 generates D2 exclusively.In the presence of ca. 10percent C2H4 the yields of H2 and DMDS are considerably reduced and both products follow first-order kinetics in their formation.Also, the formation of DMS is completely suppressed, and the Arrhenius parameters for the molecular process CH3SiH3 -> CH3H + H2 (1a) when determined from the rate of H2 production and from (CH3H + CH3SiH3 -> DMDS) production are log k1a = (15.02 +/- 0.10) - (63270 +/- 310) / 2.3RT and (14.87 +/- 0.12) - (63150 +/- 350) / 2.3RT, respectively.The molecular rate constant for H2, however, includes a small contribution from radical processes that cannot be completely suppressed.When the latter expression for k1a is used, the rate data for H2 is the unscavenged reaction can be fitted to a mechanism incorporating a second primary step, a slow, surface-catalyzed reaction generating H. and CH3SiH2. radicals , which then set up a short chain: CH3SiH2. + CH3SiH3 -> DMDS + H H + CH3SiH3 -> H2 + CH3SiH2. .On the basis of kinetic analysis of the data it is concluded that the chain is terminated linearly by CH3SiH2. radicals at the surface , with log A(s-1) = 11.7 and Ea ca. 32.3 kcal mol-1.The derived rate expression for the surface-catalyzed radical initation step CH3SiH3 -> Ch3SiH2. + H (1b) is log k1b = 12.7 - 57900/2.3RT.From the measured kinetic data the following themochemical values were derived: D(CH3H-H) = 73.5 kcal mol-1 and ΔHf(CH3H) = 51.9 kcal mol-1.
-
Bond,Brockway
, p. 3312 (1954)
-
From carbon dioxide to methane: Homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium-borane complexes
Matsuo, Tsukasa,Kawaguchi, Hiroyuki
, p. 12362 - 12363 (2006)
A mixture of a zirconium benzyl phenoxide complex and tris(pentafluorophenyl)borane is reported that catalyzes the hydrosilation reaction of carbon dioxide to generate methane via a bis(silyl)acetal intermediate. Copyright
THERMOCHEMISTRY OF SILICON-CONTAINING COMPOUNDS PART 1.-SILICON-HALOGEN COMPOUNDS, AN EVALUATION
Walsh, Robin
, p. 2233 - 2248 (1983)
Literature data on the heats of formation of silicon-halogen compounds have been collected and reviewed.The coverage includes all tetravalent monosilicon compounds containing Si-H-X, where X is a single halogen, as well as the subhalides SiXn, where n = 1,2 or 3.The data are critically evaluated from the standpoints of bond addivity and general chemical reactivity of the species involved as well as by detailed consideration of individual studies.Earlier compilations or reviews are discussed.A set of recommended values (with uncertainties) is proposed.For the divalent species, SiX2, a self-consistent set of lone-pair stabilisation energies is obtained.
-
Russell
, p. 4825,4826,4828 (1959)
-
PROCESS FOR THE STEPWISE SYNTHESIS OF SILAHYDROCARBONS
-
Page/Page column 58, (2021/12/08)
The invention relates to a process for the stepwise synthesis of silahydrocarbons bearing up to four different organyl substituents at the silicon atom, wherein the process includes at least one step a) of producing a bifunctional hydridochlorosilane by a redistribution reaction, selective chlorination of hydridosilanes with an ether/HCI reagent, or by selective chlorination of hydridosilanes with SiCI4, at least one step b) of submitting a bifunctional hydridochloromonosilane to a hydrosilylation reaction, at least one step c) of hydrogenation of a chloromonosilane, and a step d) in which a silahydrocarbon compound is obtained in a hydrosilylation reaction.
Hydrogenolysis of Polysilanes Catalyzed by Low-Valent Nickel Complexes
Comas-Vives, Aleix,Eiler, Frederik,Grützmacher, Hansj?rg,Pribanic, Bruno,Trincado, Monica,Vogt, Matthias
supporting information, p. 15603 - 15609 (2020/04/29)
The dehydrogenation of organosilanes (RxSiH4?x) under the formation of Si?Si bonds is an intensively investigated process leading to oligo- or polysilanes. The reverse reaction is little studied. To date, the hydrogenolysis of Si?Si bonds requires very harsh conditions and is very unselective, leading to multiple side products. Herein, we describe a new catalytic hydrogenation of oligo- and polysilanes that is highly selective and proceeds under mild conditions. New low-valent nickel hydride complexes are used as catalysts and secondary silanes, RR′SiH2, are obtained as products in high purity.
PROCESS FOR THE PRODUCTION OF ORGANOHYDRIDOCHLOROSILANES
-
Page/Page column 33; 35; 42, (2019/04/16)
The invention relates to a process for the manufacture of organomonosilanes, in particular, bearing both hydrogen and chlorine substituents at the silicon atom by subjecting a silane substrate comprising one or more organomonosilanes, with the proviso that at least one of these silanes has at least one chlorine substituent at the silicon atom, to the reaction with one or more metal hydrides selected from the group of an alkali metal hydride and an alkaline earth metal hydride in the presence of one or more compounds (C) acting as a redistribution catalyst.