Journal of the American Chemical Society
Page 4 of 5
(4) Yang, Y.; White, M. G.; Liu, P. J. Phys. Chem. C 2011, 116, 248.
temperatures for Cu4. However, at higher temperatures
rWGS could become significant due to a bigger reaction rate
consistent with the decreasing signal of CH3OH above 325 °C
(Figure 2). CH4 formation, on the other hand, follows the
same path as CH3OH formation to form the H3CO* species.
Then, the breaking of the C-O bond of H3CO* leads to H3C*
and O*, after which H3C* is hydrogenated to CH4 and O* is
finally hydrogenated to H2O. The rate-limiting step of the
CH4 pathway (H3CO* → CH3* + O*) has a much higher bar-
rier (1.69 eV) than that of the CH3OH pathway, suggesting
that the CH4 formation would require a much higher reac-
tion temperature than CH3OH formation. This result sup-
ports our experimental observations that CH3OH was ob-
tained as the main product at a lower temperature range
(<375°C), and explains why Cu clusters favor the CH3OH
formation by the gas-phase hydrogenation of CO2 rather
than the CH4 formation, even though the net reaction of the
latter is thermodynamically more favorable.
(5) Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.;
Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F.;
Rodriguez, J. A. Science 2014, 345, 546.
(6) Liu, C.; He, H.; Zapol, P.; Curtiss, L. A. Phys. Chem. Chem.Phys.
2014, 16, 26584.
(7) Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. J. Am.
Chem. Soc. 2012, 134, 10237.
(8) Yang, Y.; Evans, J.; Rodriguez, J. A.; White, M. G.; Liu, P.
Phys.Chem. Chem. Phys. 2010, 12, 9909.
(9) Kwak, J. H.; Kovarik, L.; Szanyi, J. ACS Catal. 2013, 3, 2449.
(10) Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser,
P. J. Am. Chem. Soc. 2014, 136, 6978.
(11) Centi, G.; Perathoner, S.; Win, G.; Gangeri, M. Green Chem. 2007,
9, 671.
(12) Gangeri, M.; Perathoner, S.; Caudo, S.; Centi, G.; Amadou, J.;
Bégin, D.; Pham-Huu, C.; Ledoux, M. J.; Tessonnier, J. P.; Su, D. S.
Catal. Today 2009, 143, 57.
(13) Rodriguez, J. A.; Evans, J.; Feria, L.; Vidal, A. B.; Liu, P.;
Nakamura, K.; Illas, F. J. Catal. 2013, 307, 162.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.;
Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.;
Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S. Science 2010, 328,
224.
(15) Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L.
A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P.
C.; Mehmood, F.; Zapol, P. Nat. Mat. 2009, 8, 213.
(16) Lee, S.; Molina, L. M.; Lopez, M. J.; Alonso, J. A.; Hammer, B.;
Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S.
Angew. Chem. Inter. Ed. 2009, 48, 1467.
To conclude, to our best knowledge the Al2O3 supported
size-selected Cu4 clusters exhibit the highest reported activi-
ty to date for CO2 reduction to CH3OH at a low CO2 partial
pressure. The unique coordination environment of Cu atoms
in size-selected subnanometer clusters results in the active
sites that are superior to those of larger Cu particles. These
results for size-selected Cu clusters demonstrate their great
potential for the development of novel low-pressure catalysts
for CH3OH synthesis from catalytic conversion of CO2 using
alternative feed streams with low CO2 concentration.
(17) Yin, C.; Tyo, E.; Kuchta, K.; von Issendorff, B.; Vajda, S. J. Chem.
Phys. 2014, 140, 174201.
(18) Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.;
Assary, R. S.; Wang, H.-H.; Redfern, P.; Wu, H.; Park, J.-B.; Sun, Y.-
K.; Vajda, S.; Amine, K.; Curtiss, L. A. Nat. Commun. 2014, 5, 4895.
(19) Vajda, S.; Lee, S.; Sell, K.; Barke, I.; Kleibert, A.; von Oeynhausen,
V.; Meiwes-Broer, K. H.; Rodriguez, A. F.; Elam, J. W.; Pellin, M. M.;
Lee, B.; Seifert, S.; Winans, R. E. J. Chem. Phys. 2009, 131, 121104.
(20) Wyrzgol, S. A.; Schafer, S.; Lee, S.; Lee, B.; Di Vece, M.; Li, X. B.;
Seifert, S.; Winans, R. E.; Stutzmann, M.; Lercher, J. A.; Vajda, S.
Phys. Chem. Chem.Phys. 2010, 12, 5585.
(21) Sungsik, L.; Byeongdu, L.; Seifert, S.; Vajda, S.; Winans, R. E.
Nuclear Instruments & Methods in Physics Research, Section A
(Accelerators, Spectrometers, Detectors and Associated Equipment)
2011, 649, 200.
ASSOCIATED CONTENT
Supporting Information
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*Corresponding authors: zapol@anl.gov (PZ), vajda@anl.gov
(SV) and curtiss@anl.gov (LAC).
(22) Stotzel, J.; Lutzenkirchen-Hecht, D.; Frahm, R.; Kimmerle, B.;
Baiker, A.; Nachtegaal, M.; Beier, M. J.; Grunwaldt, J. D. 14th
International Conference on X-Ray Absorption Fine Structure
(Xafs14), Proceedings 2009, 190.
Author Contributions
‡These authors contributed equally.
Notes
(23) Mason, M. G. Phys. Rev. B 1983, 27, 748.
(24) Hellman, A.; Gronbeck, H. J. Phys. Chem. C 2009, 113, 3674.
(25) Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.;
Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Nat.
Chem. 2014, 6, 320.
(26) Yoshihara, J.; Parker, S. C.; Schafer, A.; Campbell, C. Catal. Lett.
1995, 31, 313.
(27) Matsubu, J. C.; Yang, V. N.; Christopher, P. J. Am. Chem. Soc.
2015, 137, 3076.
(28) Adiga, S. P.; Zapol, P.; Curtiss, L. A. The J. Phys. Chem. C 2007,
111, 7422.
(29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865.
(30) Tang, W. J. Phys. Cond. Matt. 2009, 21, 084204.
(31) Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365.
(32) Zhang, R.; Wang, B.; Liu, H.; Ling, L. J. Phys. Chem. C 2011, 115,
19811.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy,
Office of Science, BES-Division of Materials Science and En-
gineering and BES-Scientific User Facilities under Contract
DE-AC02-06CH11357. We acknowledge the computing re-
sources operated by the Laboratory Computing Resource
Center (ANL), and the ANL Center for Nanoscale Materials.
We also thank Dr. Alex Martinson (ANL) for ALD coating.
REFERENCES
(1) Waugh, K. C. Catal.Today 1992, 15, 51.
(2) Olah, G. A. Angew. Chem. Inter. Ed. 2005, 44, 2636.
(3) Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-
Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; Tovar,
M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R. Science 2012, 336, 893.
ACS Paragon Plus Environment