10.1002/anie.201908336
Angewandte Chemie International Edition
COMMUNICATION
O
O
[5]
[6]
[7]
[8]
[9]
S. T. Keaveney, G. Kundu, F. Schoenebeck, Angew. Chem.
Int. Ed. 2018, 57, 12573–12577.
I. Kalvet, G. Magnin, F. Schoenebeck, Angew. Chem. Int. Ed.
2017, 56, 1581–1585.
X. Li, C. Liu, L. Wang, Q. Ye, X. Jin, Z. Jin, Org. Biomol.
Chem. 2018, 16, 8719–8723.
P. Dobrounig, M. Trobe, R. Breinbauer, Monatsh. Chem.
2017, 148, 3–35.
Pd PCy2
i-PrO
i-PrO
2.3
‡
0.0
XO2S
Pd PCy2
i-PrO
-3.5
i-PrO
J. Almond-Thynne, D. C. Blakemore, D. C. Pryde, A. C.
Spivey, Chem. Sci. 2017, 8, 40–62.
SO2X
[10] C. Wang, F. Glorius, Angew. Chem. Int. Ed. 2009, 48, 5240–
5244.
[11] R. Rossi, F. Bellina, M. Lessi, Adv. Synth. Catal. 2012, 354,
1181–1255.
XO2S
Pd PCy2
i-PrO
[12] M. R. Yadav, M. Nagaoka, M. Kashihara, R.-L. Zhong, T.
Miyazaki, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2017, 139,
9423–9426.
[13] Z.-C. Cao, S.-J. Xie, H. Fang, Z.-J. Shi, J. Am. Chem. Soc.
2018, 140, 13575–13579.
[14] A. M. Norberg, L. Sanchez, R. E. Maleczka, Curr. Opin. Drug
Discov. Devel. 2008, 11, 853–869.
[15] K. Muto, J. Yamaguchi, D. G. Musaev, K. Itami, Nat.
Commun. 2015, 6, DOI 10.1038/ncomms8508.
[16] D.-G. Yu, Z.-J. Shi, Angew. Chem. Int. Ed. 2011, 50, 7097–
7100.
i-PrO
-24.0
O
S
-22.7
-25.5
X = CF3
X = Ph
X
O
-26.1
-28.4
Pd PCy2
i-PrO
-29.1
XO2S
Pd PCy2
i-PrO
i-PrO
i-PrO
π-complex
XRD structure
oxidative addition
Figure 1. Calculated Gibbs energies for the oxidative
addition of sulfones to Pd(0)-RuPhos (kcal/mol).
[17] T. Schaub, M. Backes, U. Radius, J. Am. Chem. Soc. 2006,
128, 15964–15965.
[18] S. R. Dubbaka, P. Vogel, Org. Lett. 2004, 6, 95–98.
[19] S. B. Blakey, D. W. C. MacMillan, J. Am. Chem. Soc. 2003,
125, 6046–6047.
[20] M. Tobisu, T. Shimasaki, N. Chatani,Angew. Chem. Int. Ed.
2008, 47, 4866–4869.
[21] L. S. Liebeskind, J. Srogl, Org. Lett. 2002, 4, 979–981.
[22] R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461–
1473.
[23] E. C. Garnier-Amblard, L. S. Liebeskind, in Boronic Acids
(Ed.: D.G. Hall), Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, 2011, pp. 363–391.
[24] J.-K. Liu, Chem. Rev. 2006, 106, 2209–2223.
[25] M. Roberti, D. Pizzirani, M. Recanatini, D. Simoni, S.
Grimaudo, Di Cristina, V. Abbadessa, N. Gebbia, M.
Tolomeo, J. Med. Chem. 2006, 49, 3012–3018.
[26] J. Clayden, M. Julia, J. Chem. Soc. Chem. Commun. 1993,
1682.
[27] Y. Sumii, M. Taniguchi, X.-H. Xu, E. Tokunaga, N. Shibata,
Tetrahedron 2018, 74, 5635–5641.
[28] S. Okumura, Y. Nakao, Org. Lett. 2017, 19, 584–587.
[29] G. A. Olah, A. Orlinkov, A. B. Oxyzoglou, G. K. S. Prakash, J.
Org. Chem. 1995, 60, 7348–7350.
In summary, we have described the Suzuki–Miyaura cross-
coupling of aryl sulfones, which involves a relatively rare oxidative
addition of palladium into the aryl sulfone C–S bond. Most notably,
trifluoromethylsulfones display an intermediate level of cross-
coupling reactivity between that of nitroarenes and aryl halides,
enabling the facile synthesis of non-symmetric ter- and
quaterphenyl motifs via sequential cross-coupling. We anticipate
that the deliberate development of electrophilic partners with
complementary reactivity in other cross-coupling reactions will
further streamline approaches to iterative synthesis.
Acknowledgements
J.M. thanks the European Research Council (ERC) (grant
agreement n° 639170) and ANR LabEx “Chemistry of Complex
Systems” (ANR-10-LABX-0026 CSC). A.S. thanks the EU for a
H2020 Marie Skłodowska Curie Fellowship (792101). P.C. thanks
the French government for an MRT fellowship. CNR thanks
NSERC of Canada for funding through the Discovery Grants
program (application 418505-2012) and Compute Canada for
supercomputing resources.
[30] R. R. Merchant, J. T. Edwards, T. Qin, M. M. Kruszyk, C. Bi,
G. Che, D.-H. Bao, W. Qiao, L. Sun, M. R. Collins, et al.,
Science 2018, 360, 75–80.
[31] S. E. Denmark, A. J. Cresswell, J. Org. Chem. 2013, 78,
12593–12628.
[32] M. Nambo, E. C. Keske, J. P. G. Rygus, J. C.-H. Yim, C. M.
Crudden, ACS Catal. 2017, 7, 1108–1112.
[33] Z. T. Ariki, Y. Maekawa, M. Nambo, C. M. Crudden, J. Am.
Chem. Soc. 2018, 140, 78–81.
Notes
The authors declare no competing financial interest.
[34] L. Gong, H. Sun, L.-F. Deng, X. Zhang, J. Liu, S. Yang, D.
Niu, J. Am. Chem. Soc. 2019, jacs.9b02312.
[35] E. J. Hennessy, M. Cornebise, L. Gingipalli, T. Grebe, S.
Hande, V. Hoesch, H. Huynh, S. Throner, J. Varnes, Y. Wu,
Tetrahedron Lett. 2017, 58, 1709–1713.
[36] S. Handa, Y. Wang, F. Gallou, B. H. Lipshutz, Science 2015,
349, 1087–1091.
[37] S. Handa, J. C. Fennewald, B. H. Lipshutz, Angew. Chem.
Int. Ed. 2014, 53, 3432–3435.
[1]
[2]
A. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722–6737.
A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122,
4020–4028.
S. A. Kazi, E. M. Campi, M. T. W. Hearn, Tetrahedron 2018,
74, 1731–1741.
K. Kawada, A. Arimura, T. Tsuri, M. Fuji, T. Komurasaki, S.
Yonezawa, A. Kugimiya, N. Haga, S. Mitsumori, M. Inagaki,
et al., Angew. Chem. Int. Ed. 1998, 37, 973–975.
[3]
[4]
[38] CCDC Number: 1948443 DOI 10.5517/ccdc.csd.cc23dj02.
[39] B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131,
12898–12899.
This article is protected by copyright. All rights reserved.